首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   6篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1918年   1篇
排序方式: 共有19条查询结果,搜索用时 265 毫秒
11.
12.
Efficient plant regeneration was achieved via organogenesis from callus cultures derived from leaf tissue of Echinacea purpurea. Proliferating shoot cultures were obtained by placing leaf explants on Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BAP) and naphthaleneacetic acid (NAA) combinations. MS medium supplemented with BAP (4.44 M) and NAA (0.054 M) was the most effective, providing high shoot regeneration frequencies (100%) associated with a high number of shoots per explant (7.7 shoots/explant). Plantlets were rooted on MS medium alone or in combination with different concentrations of indole-3-butyric acid (IBA), and high rooting and survival was achieved using MS media without plant growth regulators (PGR). All plantlets survived acclimatization producing healthy plants in the greenhouse. This study demonstrated that adventitious shoot regeneration of E. purpurea from leaf explants can be a useful method for the multiplication of this important medicinal plant.  相似文献   
13.
Hoyer LL  Fundyga R  Hecht JE  Kapteyn JC  Klis FM  Arnold J 《Genetics》2001,157(4):1555-1567
The ALS (agglutinin-like sequence) gene family of Candida albicans encodes cell-surface glycoproteins implicated in adhesion of the organism to host surfaces. Southern blot analysis with ALS-specific probes suggested the presence of ALS gene families in C. dubliniensis and C. tropicalis; three partial ALS genes were isolated from each organism. Northern blot analysis demonstrated that mechanisms governing expression of ALS genes in C. albicans and C. dubliniensis are different. Western blots with an anti-Als serum showed that cross-reactive proteins are linked by beta 1,6-glucan in the cell wall of each non-albicans Candida, suggesting similar cell wall architecture and conserved processing of Als proteins in these organisms. Although an ALS family is present in each organism, phylogenetic analysis of the C. albicans, C. dubliniensis, and C. tropicalis ALS genes indicated that, within each species, sequence diversification is extensive and unique ALS sequences have arisen. Phylogenetic analysis of the ALS and SAP (secreted aspartyl proteinase) families show that the ALS family is younger than the SAP family. ALS genes in C. albicans, C. dubliniensis, and C. tropicalis tend to be located on chromosomes that also encode genes from the SAP family, yet the two families have unexpectedly different evolutionary histories. Homologous recombination between the tandem repeat sequences present in ALS genes could explain the different histories for co-localized genes in a predominantly clonal organism like C. albicans.  相似文献   
14.
The sequenced yeast genome offers a unique resource for the analysis of eukaryotic cell function and enables genome-wide screens for genes involved in cellular processes. We have identified genes involved in cell surface assembly by screening transposon-mutagenized cells for altered sensitivity to calcofluor white, followed by supplementary screens to further characterize mutant phenotypes. The mutated genes were directly retrieved from genomic DNA and then matched uniquely to a gene in the yeast genome database. Eighty-two genes with apparent perturbation of the cell surface were identified, with mutations in 65 of them displaying at least one further cell surface phenotype in addition to their modified sensitivity to calcofluor. Fifty of these genes were previously known, 17 encoded proteins whose function could be anticipated through sequence homology or previously recognized phenotypes and 15 genes had no previously known phenotype.  相似文献   
15.
We developed appropriate conditions to use a laser with 60 femtosecond pulses, a frequency of 1 KHz and a wavelength of 266 nm to efficiently crosslink proteins to DNA in human nuclei for the purpose of using immunoprecipitation to study the binding of specific proteins to specific sequences of DNA under native conditions. Irradiation of nuclei for 30 min with 1-3 GW/cm(2)pulses crosslinked 10-12% of total protein to DNA. The efficiency of crosslinking was dose and protein specific. Histones H1 and H3 were crosslinked by 15 min of irradiation with 20-25% efficiency, at least 10 times more strongly than the other histones, consistent with experiments using conventional UV light. Irradiation for 15 min did not damage proteins, as assayed by SDS-PAGE of Ku-70 and histones. Although the same level of irradiation did not cause double-strand breaks, it did make the DNA partially insensitive to Eco RI restriction enzyme, probably through formation of thymidine dimers. Immuno-analysis of crosslinked nucleoprotein showed that Ku crosslinking to nuclear DNA is detectable only in the presence of breaks in the DNA, and that nucleosomes are bound to a significant fraction of the telomeric repeat (TTAGGG) (n).  相似文献   
16.
Yeast and hyphal walls of Candida albicans were extracted with sodium dodecyl sulfate (SDS). Some of the extracted proteins reacted with a specific beta-1,6-glucan antiserum but not with a beta-1,3-glucan antiserum. They lost their beta-1,6-glucan epitope after treatment with ice-cold aqueous hydrofluoric acid, suggesting that beta-1,6-glucan was linked to the protein through a phosphodiester bridge. When yeast and hyphal walls extracted with SDS were subsequently extracted with a pure beta-1,3-glucanase, several mannoproteins that were recognized by both the beta-1,6-glucan antiserum and the beta-1,3-glucan antiserum were released. Both epitopes were sensitive to aqueous hydrofluoric acid treatment, suggesting that beta-1,3-glucan and beta-1,6-glucan are linked to proteins by phosphodiester linkages. The possible role of beta-glucans in the retention of cell wall proteins is discussed.  相似文献   
17.
The cell wall of yeast contains a major structural unit, consisting of a cell wall protein (CWP) attached via a glycosylphosphatidylinositol (GPI)-derived structure to beta 1,6-glucan, which is linked in turn to beta 1, 3-glucan. When isolated cells walls were digested with beta 1,6-glucanase, 16% of all CWPs remained insoluble, suggesting an alternative linkage between CWPs and structural cell wall components that does not involve beta 1,6-glucan. The beta 1,6-glucanase-resistant protein fraction contained the recently identified GPI-lacking, O-glycosylated Pir-CWPs, including Pir2p/Hsp150. Evidence is presented that Pir2p/Hsp150 is attached to beta 1,3-glucan through an alkali-sensitive linkage, without beta 1,6-glucan as an interconnecting moiety. In beta 1,6-glucan-deficient mutants, the beta 1,6-glucanase-resistant protein fraction increased from 16% to over 80%. This was accompanied by increased incorporation of Pir2p/Hsp150. It is argued that this is part of a more general compensatory mechanism in response to cell wall weakening caused by low levels of beta 1,6-glucan.  相似文献   
18.
The genus Echinacea is comprised of nine species, which are perennial herbs indigenous to North America and which have been traditionally used as medicinal plants for centuries. Three Echinacea species, E. angustifolia, E. purpurea, and E. pallida, are currently being traded internationally in the natural products market. Echinacea products constitute a significant portion of this growing, multi-billion dollar industry. The increasing popularity of Echinacea products has led to the expansion of wildcrafting and commercial cultivation to meet the growing demand for plant material. Echinacea is considered of value as a nonspecific immune stimulant, and claims of its efficacy have been tentatively supported by both laboratory and clinical studies. This study used random amplified polymorphic DNA (RAPD) markers to determine the genetic relationships of the three Echinacea species of commercial interest, to evaluate the level of diversity present within germplasm of each of the three species, and to compare accessions of each species available from different sources. A total of 101 RAPD markers were generated for the 76 individuals of four species included in the analysis. NTSYS-pc was used to evaluate the genetic relationships of the three species and to determine the general level of overall diversity. Analysis of molecular variance (AMOVA) was performed using pruned marker sets corrected for the dominant nature of RAPD markers. AMOVA revealed that most of the variation occurred within accessions of the same species, though some accessions of both E. pallida and E. angustifolia were found to be significantly different from other accessions of the same species.  相似文献   
19.
The yeast Saccharomyces cerevisiae is the first fungus for which the structure of the cell wall is known at the molecular level. It is a dynamic and highly regulated structure. This is vividly illustrated when the cell wall is damaged and a salvage pathway becomes active, resulting in compensatory changes in the wall.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号