首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   737篇
  免费   47篇
  2023年   4篇
  2021年   15篇
  2020年   10篇
  2019年   8篇
  2018年   14篇
  2017年   8篇
  2016年   11篇
  2015年   22篇
  2014年   30篇
  2013年   57篇
  2012年   55篇
  2011年   44篇
  2010年   24篇
  2009年   18篇
  2008年   32篇
  2007年   39篇
  2006年   36篇
  2005年   29篇
  2004年   29篇
  2003年   19篇
  2002年   18篇
  2001年   19篇
  2000年   17篇
  1999年   10篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1992年   11篇
  1991年   6篇
  1990年   9篇
  1989年   9篇
  1988年   9篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1981年   6篇
  1980年   5篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   11篇
  1973年   14篇
  1972年   10篇
  1971年   5篇
  1970年   4篇
  1969年   6篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
41.
42.
Epstein-Barr virus (EBV) episomal genomes are stably maintained in human cells and are partitioned during cell division by mitotic chromosome attachment. Partitioning is mediated by the viral EBNA1 protein, which binds both the EBV segregation element (FR) and a mitotic chromosomal component. We previously showed that the segregation of EBV-based plasmids can be reconstituted in Saccharomyces cerevisiae and is absolutely dependent on EBNA1, the EBV FR sequence, and the human EBNA1-binding protein 2 (EBP2). We have now used this yeast system to elucidate the functional contribution of human EBP2 to EBNA1-mediated plasmid partitioning. Human EBP2 was found to attach to yeast mitotic chromosomes in a cell cycle-dependent manner and cause EBNA1 to associate with the mitotic chromosomes. The domain of human EBP2 that binds both yeast and human chromosomes was mapped and shown to be functionally distinct from the EBNA1-binding domain. The functionality and localization of human EBP2 mutants and fusion proteins indicated that the attachment of EBNA1 to mitotic chromosomes is crucial for EBV plasmid segregation in S. cerevisiae, as it is in humans, and that this is the contribution of human EBP2. The results also indicate that plasmid segregation in S. cerevisiae can occur through chromosome attachment.  相似文献   
43.
Calreticulin is a molecular chaperone found in the endoplasmic reticulum in eukaryotes, and its interaction with N-glycosylated polypeptides is mediated by the glycan Glc(1)Man(7-9)GlcNAc(2) present on the target glycoproteins. Here, we report the thermodynamic parameters of its interaction with di-, tri-, and tetrasaccharide, which are truncated versions of the glucosylated arm of Glc(1)Man(7-9)GlcNAc(2), determined by the quantitative technique of isothermal titration calorimetry. This method provides a direct estimate of the binding constants (K(b)) and changes in enthalpy of binding (Delta H(b) degrees ) as well as the stoichiometry of the reaction. Unlike past speculations, these studies demonstrate unambiguously that calreticulin has only one site per molecule for binding its complementary glucosylated ligands. Although the binding of glucose by itself is not detectable, a binding constant of 4.19 x 10(4) m(-1) at 279 K is obtained when glucose occurs in alpha-1,3 linkage to Man alpha Me as in Glc alpha 1-3Man alpha Me. The binding constant increases by 25-fold from di- to trisaccharide and doubles from tri- to tetrasaccharide, demonstrating that the entire Glc alpha 1-3Man alpha 1-2Man alpha 1-2Man alpha Me structure of the oligosaccharide is recognized by calreticulin. The thermodynamic parameters thus obtained were supported by modeling studies, which showed that increased number of hydrogen bonds and van der Waals interactions occur as the size of the oligosaccharide is increased. Also, several novel findings about the recognition of saccharide ligands by calreticulin vis á vis legume lectins, which have the same fold as this chaperone, are discussed.  相似文献   
44.
Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient chromosome-free bipolar array whose orientation specified the axis along which chromosomes segregated. We propose that the capture and incorporation of preformed K-fibers complements the microtubule plus-end capture mechanism and contributes to spindle formation in vertebrates.  相似文献   
45.
Huang X  Aulabaugh A  Ding W  Kapoor B  Alksne L  Tabei K  Ellestad G 《Biochemistry》2003,42(38):11307-11315
Staphylococcus aureus sortase (SrtA) is a thiol transpeptidase. The enzyme catalyzes a cell wall sorting reaction in which a surface protein with a sorting signal containing a LPXTG motif is cleaved between the threonine and glycine residues. The resulting threonine carboxyl end of this protein is covalently attached to a pentaglycine cross-bridge of peptidoglycan. The transpeptidase activity of sortase has been demonstrated in in vitro reactions between a LPETG-containing peptide and triglycine. When a nucleophile is not available, sortase slowly hydrolyzes the LPETG peptide at the same site. In this study, we have analyzed the steady-state kinetics of these two types of reactions catalyzed by sortase. The kinetic results fully support a ping-pong mechanism in which a common acyl-enzyme intermediate is formed in transpeptidation and hydrolysis. However, each reaction has a distinct rate-limiting step: the formation of the acyl-enzyme in transpeptidation and the hydrolysis of the same acyl-enzyme in the hydrolysis reaction. We have also demonstrated in this study that the nucleophile binding site of S. aureus sortase SrtA is specific for diglycine. While S1' and S2' sites of the enzyme both prefer a glycine residue, the S1' site is exclusively selective for glycine. Lengthening of the polyglycine acceptor nucleophile beyond diglycine does not further enhance the binding and catalysis.  相似文献   
46.
(R)- and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol are intermediates in the synthesis of β-adrenergic blocking agents and antihypertensive drugs such as propranolol and nadoxolol. Herein, improvement in the preparation of racemic 1-chloro-3-(1-naphthyloxy)-2-propanol generated from 1-naphthol and epichlorohydrin are reported. In addition, kinetic resolution studies have been conducted to obtain both (R) and (S)-1-chloro-3-(1-naphthyloxy)-2-propanol. These compounds were obtained in highly optically pure form by the stereoselective hydrolysis of its acyl derivatives using whole cell preparations containing enzymes from native sources. The results were compared with those obtained using commercial lipases.  相似文献   
47.
Lentivirus lytic peptides (LLPs) are derived from HIV-1 and have antibacterial properties. LLP derivatives (eLLPs) were engineered for greater potency against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA). Minimum bactericidal concentration (MBC) was determined in low and physiologic salt concentrations. MBC was decreased against SA and equivalent against PA in physiologic salt when compared to the parent compound LLP1. In a novel cystic fibrosis (CF) airway cell model, one derivative, WLSA5, reduced the number of adherent PA and only moderately affected CF cell viability. Overall, eLLPs are selectively toxic to bacteria and may be useful against CF airway infections.  相似文献   
48.
Xylanase and pectinase production by Streptomyces sp. QG-11-3 was stimulated by DL-norleucine, L-leucine, DL-isoleucine, L-lysine monohydrochloride and DL--phenylalanine by up to 3.72- and 2.78-fold, respectively, whereas the combination of DL-norleucine, L-leucine and DL-isoleucine synergistically stimulated the xylanase and pectinase production by up to 6.72- and 5.62-fold, respectively. Glycine, DL-norvaline, DL-methionine, and DL-aspartic acid showed no significant stimulatory effect on enzyme production.  相似文献   
49.
The role of astrocytes in the production of the neurotoxin quinolinic acid (QUIN) and other products of the kynurenine pathway (KP) is controversial. Using cytokine-stimulated human astrocytes, we assayed key enzymes and products of the KP. We found that astrocytes lack kynurenine-hydroxylase so that large amounts of kynurenine (KYN) and kynurenic acid (KYNA) were produced, while minor amounts of QUIN were synthesised that were completely degraded. We then showed that kynurenine added to macrophages led to significant production of QUIN. These results suggest that astrocytes alone are neuroprotective by minimising QUIN production and maximising synthesis of KYNA. However, it is likely that, in the presence of macrophages and/or microglia, astrocytes are neurotoxic by producing large concentrations of KYN that can be metabolised by neighbouring monocytic cells to QUIN.  相似文献   
50.
Kynurenine, a metabolite of tryptophan along the 'kynurenine pathway', is at a branch point of the pathway which can lead to the synthesis of both quinolinic acid (QUIN) and kynurenic acid (KYNA). KYNA is an antagonist of glutamate receptors; however, QUIN is a selective agonist of NMDA receptors, and has been shown to act as an excitotoxic agent. A high QUIN/KYNA ratio has been implicated in a variety of neurological diseases in which excitotoxic neuronal cell death is found, e.g. AIDS-related dementia, stroke, etc. Inhibiting the key enzymes of this pathway (i.e. kynureninase and kynurenine 3-hydroxylase) would lower the QUIN/KYNA ratio, which may potentially have neuroprotective effects. We have developed high through-put assays for kynurenine pathway enzymes which allow us to screen extracts from marine organisms for selective enzyme inhibitors. Active metabolites are purified, isolated and identified by HPLC, high-field NMR and mass spectral techniques. Extracts from a sponge of the Aka species were found to contain a selective inhibitor of kynureninase. We have recently purified and identified the active principal as being serotonin sulfate. Related indoleamines, serotonin and 5-hydroxyindoleacetic acids are inactive. This finding may be suggestive of a novel interaction between the serotoninergic and excitatory amino acid pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号