首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   79篇
  2023年   9篇
  2022年   24篇
  2021年   37篇
  2020年   22篇
  2019年   30篇
  2018年   33篇
  2017年   36篇
  2016年   66篇
  2015年   62篇
  2014年   66篇
  2013年   131篇
  2012年   138篇
  2011年   137篇
  2010年   61篇
  2009年   60篇
  2008年   68篇
  2007年   75篇
  2006年   67篇
  2005年   61篇
  2004年   74篇
  2003年   63篇
  2002年   51篇
  2001年   20篇
  2000年   31篇
  1999年   25篇
  1998年   16篇
  1997年   15篇
  1996年   11篇
  1994年   10篇
  1992年   17篇
  1991年   21篇
  1990年   21篇
  1989年   15篇
  1988年   15篇
  1987年   10篇
  1986年   14篇
  1985年   9篇
  1984年   18篇
  1982年   18篇
  1981年   11篇
  1980年   12篇
  1979年   20篇
  1978年   21篇
  1977年   14篇
  1976年   9篇
  1975年   8篇
  1974年   12篇
  1973年   9篇
  1972年   9篇
  1964年   14篇
排序方式: 共有1847条查询结果,搜索用时 31 毫秒
11.
We describe here the construction of a vector (pSSC-9) which can be used for the insertional mutagenesis of any gene for which genomic sequences have been cloned. This vector contains a neomycin-resistance-encoding gene (neoR) which is driven by a modified thymidine kinase (tk) promoter for positive selection. Flanking neoR are two tk genes driven by their own promoters for negative selection of nonhomologous insertions. The neoR and tk cassettes are separated by four unique cloning sites on the right-hand side of the neoR cassette and three unique sites on the left-hand side. The vector also includes two SfiI sites, one on each side of the tk cassettes, for the excision of the cloned genomic DNA fragments along with the selectable markers. Electroporation of pSSC-9 into mouse embryonic stem (ES) cells and cultured diploid mouse adrenal Y-1 cells conferred resistance to G418 and sensitivity to ganciclovir in both cell lines. These results illustrate the expression of the positive and negative selectable markers in two different cell lines and thus suggest that the vector could be used in ES cells, as well as in cultured somatic cells.  相似文献   
12.
Summary The cytochemical localization of ATPase activity has been investigated in maize root cells using both lead and cerium-based capture methods. With both methods, staining at the plasma membrane was observed in all cells of the root, although the precipitate obtained with cerium was more uniform and granular than that with lead. Controls using no substrate or no magnesium, -glycerophosphate to replace ATP, vanadate or boiled tissue generally showed little or no staining. However, biochemical studies on purified plasma membrane fractions showed that ATPase activity was markedly inhibited by fixation, particularly by glutaraldehyde, and also by lead and cerium ions. Non-enzymic hydrolysis of ATP by cerium was greater than that by lead. The value and limitations of these procedures for the localization of plasma membrane H+-ATPase activity are summarized in relation to previous criticisms of these methods.Abbreviations DTT dithiothreitol - EDTA ethylene diaminetetraacetic acid - GP B-glycerophosphate - PCMBS p-chloromercuribenzene sulphonic acid - PMSF phenylmethylsulphonyl fluoride  相似文献   
13.
Phosphatidate-mediated Ca2+ membrane traversal is inhibited by phospholipids (PL) such a phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin and lysoPC, but not by PC-plasmalogen. Kinetics of Ca2+ traversal through a 'passive' bilayer consisting of OH-blocked cholesterol show competition between PC and phosphatidic acid (PA); it appears likely that a Ca(PA.PC) complex is formed which is not a transmembrane ionophore but will reduce the amount of phosphatidic acid available for the formation of the ionophore, Ca(PA)2. PS and PI may inhibit Ca2+-traversal in the same manner by forming Ca(PA.PL) complexes. We suggest that PC-plasmalogen, with one of the Ca2+-chelating ester CO groups missing, cannot engage in calcium cages, i.e., Ca(PA.PL) complexes, and thus does not interfere with Ca(PA)2 formation. Double-reciprocal plotting of Ca2+ traversal rates in cholesterol-containing liposomes vs. calcium concentration suggests that cholesterol inhibits Ca2+ traversal by competing with Ca2+ for PA. The inhibition does not seem to be caused by a restructuring or dehydration of the membrane 'hydrogen belts' affected by cholesterol; most probably, it is due to hydrogen bonding of the cholesterol-OH group to a CO group of PA; this reduces the amount of PA available for the calcium ferry. The inhibition by sphingomyelin and lysoPC may also be explained by their OH group interacting with PA via hydrogen bonding. The pH dependence of Ca2+ traversal suggests that H[Ca(PA)2]- can serve as Ca2+ cross-membrane ferry but that at physiological pH, [Ca(PA)2]2- is the predominant ionophore. In conclusion, the results indicate that Ca2+ traversal is strongly dependent on the structure of the hydrogen belts, i.e., the membrane strata occupied by hydrogen bond acceptors (CO of phospholipids) and donors (OH of cholesterol, sphingosine), and that lipid hydrogen belt structures may regulate storage and passage of Ca2+.  相似文献   
14.
In studies of in-membrane molecular interactions, need may arise for a matrix that cannot itself interact, except hydrophobically, with the reactants. Such a bilayer matrix should, ideally, consist of only a hydrophobic zone without ionic outer layers and without hydrogen belts (the membrane strata containing CO and OH groups). However, because of the necessity of anchoring the bilayer to its aqueous surroundings, there must be polar substituents. Hydrophilic ether groups in the form of polyoxyethylenes can provide nearly sufficient anchoring and yet not confer unwanted reactivity to the membrane since they are only very weak H-bond acceptors. The stability of the bilayer is ensured by the presence of a few percent of an amphiphile (which may be the substrate to be studied, e.g. a phospholipid) or by a free polyethylene hydroxy group far remote from the original hydrogen belt region. Our most impermeable liposomes consisted of O-methylcholesterol/O-methoxyethoxyethoxyethylcholesterol; the most readily prepared liposomes were made from O-methylcholesterol and hydroxy(ethoxy)4dodecane (Brij 30) or Triton.  相似文献   
15.
Rates of phosphatidic acid- (PA-) mediated Ca2+-traversal are maximal in 'passive bilayers' void of lipid CO and OH groups: dietherphosphatidylcholine (diether-PC) or OH-blocked cholesterol liposomes. Phosphatidylcholine (PC) as bilayer matrix causes 99% inhibition, while 45 mol% cholesterol in passive bilayers inhibits by about 70%. Possibly, the absence of CO and OH groups causes a dehydration of the 'hydrogen belts', i.e., the membrane strata occupied by hydrogen bond acceptors (CO of phospholipids) and donors (OH of cholesterol, sphingosine) and thereby facilitates the formation of dehydrated Ca(PA)2, the ionophoric vehicle; or (our preferred explanation) PC engages in a (non-ionophoric) Ca(PA X PC) complex and thus reduces the concentration of the ionophore, while cholesterol competes with Ca2+ for the CO groups of phosphatidic acid by hydrogen-bonding. The Ca2+-traversal rates realized in bilayers with modified hydrogen belts lend support to the speculation that a Ca(PA)2 ferry may be of physiological importance, e.g., in membranes (such as myelin) containing much ether phospholipid (plasmalogen); and that Ca2+-membrane association and traversal may be controlled by the composition of the hydrogen belts.  相似文献   
16.
17.
Freshly harvested seeds of soybean and barley were artificially aged. The progeny showed a marked decrease in mitotic index and chromosomal aberrations of various types increased at both mitosis and meiosis, resulting in a significant loss of pollen viability as the ageing advanced. Studies on the types and frequencies of chlorophyll deficients and phenodeviants also showed an overall increase, suggesting that ageing mimics irradiation effects and produces alterations in the gene complexes resulting in the segregation of different kinds of phenotypic mutations.  相似文献   
18.
Two seemingly contradictory sets of observations have been made in studies of biological transport, which are essential for our understanding of the transport mechanism: carriers are integral membrane proteins, which span the membrane and are not free to rotate across the membrane; carriers appear to function like a ferryboat, with a substrate binding site moving back and forth from one side of the membrane to the other. To reconcile these facts, it is necessary to postulated gated channels connecting the substrate site with the two membrane surfaces: the channels are arranged so that as one opens the other closes, with the result that the substrate site is alternately accessible from opposite sides of the membrane. Based on these properties, the following distinguishing features of molecules specifically bound in the channels may be predicted: if sufficiently bulky, they inhibit transport; they bind outside the substrate site (though adjacent to it), they bind asymmetrically either to the outward-facing carrier and on the outer surface of the membrane, or to the inward-facing carrier and on the inner surface of the membrane. The asymmetrical inhibition of the glucose and choline transport systems of erythrocytes by various inhibitors is examined, and the behavior in every case is found to conform with these criteria. From the results it may be concluded that the glucose carrier binds cytochalasin B in the inner gated channel and phloretin and tetrathionate in the outer gated channel.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
19.
A deletion of the albino (c) locus on mouse chromosome 7 has been demonstrated using Q- and G-banding methods in a mouse heterozygous for the radiation-induced lethal albino allele, c(25H). The deletion, which is thought to be 1-6 cM long, represents about 7.6% of the length of the metaphase chromosome.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号