首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1451篇
  免费   76篇
  1527篇
  2023年   3篇
  2022年   9篇
  2021年   12篇
  2020年   9篇
  2019年   18篇
  2018年   17篇
  2017年   25篇
  2016年   28篇
  2015年   42篇
  2014年   61篇
  2013年   79篇
  2012年   81篇
  2011年   104篇
  2010年   68篇
  2009年   55篇
  2008年   89篇
  2007年   99篇
  2006年   95篇
  2005年   77篇
  2004年   104篇
  2003年   103篇
  2002年   98篇
  2001年   9篇
  2000年   8篇
  1999年   25篇
  1998年   26篇
  1997年   12篇
  1996年   18篇
  1995年   8篇
  1994年   17篇
  1993年   11篇
  1992年   13篇
  1991年   12篇
  1990年   11篇
  1989年   15篇
  1988年   9篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1984年   7篇
  1983年   2篇
  1982年   8篇
  1981年   4篇
  1980年   4篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有1527条查询结果,搜索用时 15 毫秒
991.
Glycosylphosphatidylinositol (GPI) is a post-translational modification that anchors cell surface proteins to the plasma membrane, and GPI modifications occur in all eukaryotes. Biosynthesis of GPI starts on the cytoplasmic face of the endoplasmic reticulum (ER) membrane, and GPI precursors flip from the cytoplasmic side to the luminal side of the ER, where biosynthesis of GPI precursors is completed. Gwt1p and PIG-W are inositol acyltransferases that transfer fatty acyl chains to the inositol moiety of GPI precursors in yeast and mammalian cells, respectively. To ascertain whether flipping across the ER membrane occurs before or after inositol acylation of GPI precursors, we identified essential residues of PIG-W and Gwt1p and determined the membrane topology of Gwt1p. Guided by algorithm-based predictions of membrane topology, we experimentally identified 13 transmembrane domains in Gwt1p. We found that Gwt1p, PIG-W, and their orthologs shared four conserved regions and that these four regions in Gwt1p faced the luminal side of the ER membrane. Moreover, essential residues of Gwt1p and PIG-W faced the ER lumen or were near the luminal edge of transmembrane domains. The membrane topology of Gwt1p suggested that inositol acylation occurred on the luminal side of the ER membrane. Rather than stimulate flipping of the GPI precursor across the ER membrane, inositol acylation of GPI precursors may anchor the precursors to the luminal side of the ER membrane, preventing flip-flops.  相似文献   
992.
Isocitrate dehydrogenase 1 (IDH1) mutations, which are early and frequent genetic alterations in gliomas, are specific to a single codon in the conserved and functionally important Arginine 132 (R132) in IDH1. We earlier established a monoclonal antibody (mAb), IMab-1, which is specific for R132H-containing IDH1 (IDH1-R132H), the most frequent IDH1 mutation in gliomas. To establish IDH1-R132S-specific mAb, we immunized mice with R132S-containing IDH1 (IDH1-R132S) peptide. After cell fusion using Sendai virus envelope, IDH1-R132S-specific mAbs were screened in ELISA. One mAb, SMab-1, reacted with the IDH1-R132S peptide, but not with other IDH1 mutants. Western-blot analysis showed that SMab-1 reacted only with the IDH1-R132S protein, not with IDH1-WT protein or IDH1 mutants, indicating that SMab-1 is IDH1-R132S-specific. Furthermore, SMab-1 specifically stained the IDH1-R132S-expressing glioblastoma cells in immunocytochemistry and immunohistochemistry, but did not react with IDH1-WT or IDH1-R132H-containing glioblastoma cells. We newly established an anti-IDH1-R132S-specific mAb SMab-1 for use in diagnosis of mutation-bearing gliomas.  相似文献   
993.
Objective: Progressive β-cell dysfunction and loss of β-cell mass are fundamental pathogenic features of type 2 diabetes. To examine if anti-diabetic reagents, such as insulin, pioglitazone (pio), and alogliptin (alo), have protective effects on β-cell mass and function in vivo, we treated obese diabetic db/db mice with these reagents. Methods: Male db/db mice were treated with a chow including pio, alo, or both of them from 8 to 16 weeks of age. Insulin glargine (gla) was daily injected subcutaneously during the same period. Results: At 16 weeks of age, untreated db/db mice revealed marked increase of HbA1c level, whereas those treated with pio, pio + alo, or insulin revealed the almost same HbA1c levels as non-diabetic db/m mice. Islet mass evaluated by direct counting in the whole pancreas and insulin content in isolated islets were preserved in pio, pio + alo and gla groups compared with untreated or alo groups, and there was no difference among pio, pio + alo and gla groups. To precisely evaluate islet β-cell functions, islet perifusion analysis was performed. In pio, pio + alo and gla groups, biphasic insulin secretion was preserved compared with untreated or alo groups. In particular, pio + alo as well as gla therapy preserved almost normal insulin secretion, although pio therapy improved partially. To examine the mechanism how these reagents exerted beneficial effects on β-cells, we evaluated expression levels of various factors which are potentially important for β-cell functions by real-time RT-PCR and immunohistochemistry. The results showed that expression levels of MafA and GLP-1 receptor were markedly decreased in untreated and alo groups, but not in pio, pio + alo and gla groups. Conclusion: Combination therapy with pio and alo almost completely normalized β-cell functions in vivo, which was comparable with gla treatment.  相似文献   
994.
Diacylglycerol kinase (DGK) is involved in the regulation of lipid-mediated signal transduction through the metabolism of a second messenger diacylglycerol. Of the DGK family, DGKζ, which contains a nuclear localization signal, localizes mainly to the nucleus but translocates to the cytoplasm under pathological conditions. However, the detailed mechanism of translocation and its functional significance remain unclear. To elucidate these issues, we used a proteomic approach to search for protein targets that interact with DGKζ. Results show that nucleosome assembly protein (NAP) 1-like 1 (NAP1L1) and NAP1-like 4 (NAP1L4) are identified as novel DGKζ binding partners. NAP1Ls constitutively shuttle between the nucleus and the cytoplasm in transfected HEK293 cells. The molecular interaction of DGKζ and NAP1Ls prohibits nuclear import of DGKζ because binding of NAP1Ls to DGKζ blocks import carrier proteins, Qip1 and NPI1, to interact with DGKζ, leading to cytoplasmic tethering of DGKζ. In addition, overexpression of NAP1Ls exerts a protective effect against doxorubicin-induced cytotoxicity. These findings suggest that NAP1Ls are involved in a novel molecular basis for the regulation of nucleocytoplasmic shuttling of DGKζ and provide a clue to examine functional significance of its translocation under pathological conditions.  相似文献   
995.
996.
Slow-growing juveniles of shade-tolerant plant species are predicted to have tough leaves because of the high cost of leaf replacement in shade relative to potential carbon gain. We assessed the degree of correlated evolution among eight traits associated with leaf toughness and the relationships of those traits with the growth and mortality rates of 197 tree and shrub species from the understory of the 50-ha forest dynamics plot on Barro Colorado Island, Panama. Path analysis with phylogenetically independent contrasts revealed that leaves attained material toughness (resistance to fracture per unit fracture area) through increases in tissue density, percent cellulose per unit dry mass, and vein fracture toughness. Lamina density and cellulose content evolved independently and thus represent different paths to material toughness. Structural toughness (resistance to fracture per unit fracture length) depended on material toughness and lamina thickness. Mortality rates of individuals 1-10 cm in stem diameter were negatively correlated with material toughness and lamina density but were independent of structural toughness and cell wall fiber contents. Leaf toughness traits were uncorrelated with relative growth rates. Results imply that material toughness enhances resistance to natural enemies, which increases survival and offsets the biomass allocation cost of producing tough leaves in the shaded understory.  相似文献   
997.
A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation.  相似文献   
998.
Unlike other synthetic or physiological inhibitors for matrix metalloproteinases (MMPs), the β-amyloid precursor protein-derived inhibitory peptide (APP-IP) having an ISYGNDALMP sequence has a high selectivity toward MMP-2. Our previous study identified amino acid residues of MMP-2 essential for its selective inhibition by APP-IP and demonstrated that the N to C direction of the decapeptide inhibitor relative to the substrate-binding cleft of MMP-2 is opposite that of substrate. However, detailed interactions between the two molecules remained to be clarified. Here, we determined the crystal structure of the catalytic domain of MMP-2 in complex with APP-IP. We found that APP-IP in the complex is indeed embedded into the substrate-binding cleft of the catalytic domain in the N to C direction opposite that of substrate. With the crystal structure, it was first clarified that the aromatic side chain of Tyr(3) of the inhibitor is accommodated into the S1' pocket of the protease, and the carboxylate group of Asp(6) of APP-IP coordinates bidentately to the catalytic zinc of the enzyme. The Ala(7) to Pro(10) and Tyr(3) to Ile(1) strands of the inhibitor extend into the nonprime and the prime sides of the cleft, respectively. Therefore, the decapeptide inhibitor has long range contact with the substrate-binding cleft of the protease. This mode of interaction is probably essential for the high MMP-2 selectivity of the inhibitor because MMPs share a common architecture in the vicinity of the catalytic center, but whole structures of their substrate-binding clefts have sufficient variety for the inhibitor to distinguish MMP-2 from other MMPs.  相似文献   
999.
1000.
Warashina T  Umehara K  Miyase T  Noro T 《Phytochemistry》2011,72(14-15):1865-1875
A pregnane glycoside fraction from the roots of Asclepias tuberosa L. caused normal human skin fibroblasts to proliferate. This fraction contained 21 pregnane glycosides whose structures were established using NMR spectroscopic analysis and chemical evidence. The aglycones of most of these compounds were identified as 8,12;8,20-diepoxy-8,14-secopregnanes, such as tuberogenin or 5,6-didehydrotuberogenin, the same aglycones as constituents of the aerial parts of this plant. Some of these compounds also caused proliferation of skin fibroblasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号