首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1506篇
  免费   72篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   28篇
  2020年   7篇
  2019年   23篇
  2018年   33篇
  2017年   29篇
  2016年   41篇
  2015年   51篇
  2014年   68篇
  2013年   90篇
  2012年   128篇
  2011年   124篇
  2010年   77篇
  2009年   71篇
  2008年   119篇
  2007年   109篇
  2006年   99篇
  2005年   77篇
  2004年   83篇
  2003年   76篇
  2002年   63篇
  2001年   20篇
  2000年   7篇
  1999年   9篇
  1998年   12篇
  1997年   13篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   8篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1578条查询结果,搜索用时 812 毫秒
41.
42.
Monoclonal antibodies (mAbs) specific for the human macrophage galactose-type calcium-type lectin (MGL) were established. The recombinant extracellular domain of MGL was used to immunize a mouse, and 10 hybridoma clones were obtained. Binding of recombinant MGL to asialo-bovine submaxillary mucin was shown to be blocked by mAbs MLD-1, 4 and 6. Immunoprecipitation of MGL from lysates of COS-1 cells transfected with MGL cDNA (form 6A) was achieved with mAbs MLD-1, 4, 7, 8 and 16. Chimeric recombinant proteins between human MGL and mouse MGL1 were used to determine the location of the epitopes for these mAbs. mAbs MLD-8, 13, 15 and 16 interacted with the amino terminal side of the conserved WVDGTD sequence immediately upstream of QPD, whereas mAbs MLD-7, 12 and 17 interacted with the other side. mAbs MLD-1, 4, and 6 apparently required both sides of this boundary. mAbs MLD-15 and 16 were shown to recognize the protein products of alternatively spliced mRNA 6A/8A and 6C/8A, having deletions at the boundary of exons 7 and 8, in addition to full length and other spliced forms of MGL (6A, 6B and 6C), whereas the other mAbs bound only full length and forms 6A, 6B and 6C.  相似文献   
43.
The Rac-specific guanine nucleotide exchange factor (GEF) Asef is activated by binding to the tumor suppressor adenomatous polyposis coli mutant, which is found in sporadic and familial colorectal tumors. This activated Asef is involved in the migration of colorectal tumor cells. The GEFs for Rho family GTPases contain the Dbl homology (DH) domain and the pleckstrin homology (PH) domain. When Asef is in the resting state, the GEF activity of the DH-PH module is intramolecularly inhibited by an unidentified mechanism. Asef has a Src homology 3 (SH3) domain in addition to the DH-PH module. In the present study, the three-dimensional structure of Asef was solved in its autoinhibited state. The crystal structure revealed that the SH3 domain binds intramolecularly to the DH domain, thus blocking the Rac-binding site. Furthermore, the RT-loop and the C-terminal region of the SH3 domain interact with the DH domain in a manner completely different from those for the canonical binding to a polyproline-peptide motif. These results demonstrate that the blocking of the Rac-binding site by the SH3 domain is essential for Asef autoinhibition. This may be a common mechanism in other proteins that possess an SH3 domain adjacent to a DH-PH module.  相似文献   
44.
Salmonella typhimurium OppA is the periplasmic oligopeptide-binding protein. Backbone resonances of OppA(D419N) on its own were assigned for ∼90% of residues. Missing residues are localised around the ligand-binding site, suggesting conformational flexibility in the unliganded state.  相似文献   
45.
Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.  相似文献   
46.
Telomere protection by mammalian Pot1 requires interaction with Tpp1   总被引:4,自引:0,他引:4  
The shelterin complex at mammalian telomeres contains the single-stranded DNA-binding protein Pot1, which regulates telomere length and protects chromosome ends. Pot1 binds Tpp1, the shelterin component that connects Pot1 to the duplex telomeric DNA-binding proteins Trf1 and Trf2. Control of telomere length requires that Pot1 binds Tpp1 as well as the single-stranded telomeric DNA, but it is not known whether the protective function of Pot1 depends on Tpp1. Alternatively, Pot1 might function similarly to the Pot1-like proteins of budding and fission yeast, which have no known Tpp1-like connection to the duplex telomeric DNA. Using mutant mouse cells with diminished Tpp1 levels, RNA interference directed to mouse Tpp1 and Pot1, and complementation of mouse Pot1 knockout cells with human and mouse Pot1 variants, we show here that Tpp1 is required for the protective function of mammalian Pot1 proteins.  相似文献   
47.
The eye lens is composed of fiber cells that differentiate from epithelial cells on its anterior surface. In concert with this differentiation, a set of proteins essential for lens function is synthesized, and the cellular organelles are degraded. DNase II-like acid DNase, also called DNase IIbeta, is specifically expressed in the lens, and degrades the DNA in the lens fiber cells. Here we report that DNase II-like acid DNase is synthesized as a precursor with a signal sequence, and is localized to lysosomes. DNase II-like acid DNase mRNA was found in cortical fiber cells but not epithelial cells, indicating that its expression is induced during the differentiation of epithelial cells into fiber cells. Immunohistochemical and immunocytochemical analyses indicated that DNase II-like acid DNase was colocalized with Lamp-1 in the lysosomes of fiber cells in a relatively narrow region bordering the organelle-free zone, and was often found in degenerating nuclei. A comparison by microarray analysis of the gene expression profiles between epithelial and cortical fiber cells of young mouse lens indicated that some genes for lysosomal enzymes (cathepsins and lipases) were strongly expressed in the fiber cells. These results suggest that the lysosomal system plays a role in the degradation of cellular organelles during lens cell differentiation.  相似文献   
48.
Non-small cell lung cancer (NSCLC) is an aggressive lung cancer accounting for approximately 85% of all lung cancer patients. For the patients with Stages IIIA, IIIB, and IIIC, the 5-year survival is low though with the combination with radiotherapy and chemotherapy. In addition, the occurrence of tumor cells (repopulated tumors) that survive irradiation remains a challenge. In our previous report, we subcloned the radiation-surviving tumor cells (IR cells) using the human NSCLC cell line, H1299, and found that the expression of neuropilin-1 (NRP-1) was upregulated in IR cells by the microarray analysis. Here, we investigated the contribution of neuropilin-1 to changes in the characteristics of IR cells. Although there were no differences in angiogenic activity in the tube formation assay between parental and IR cells, the cell motility was increased in IR cells compared to parental cells in the cell migration assay. This enhanced cell motility was suppressed by pretreatment with anti-NRP-1 antibody. Although further studies are necessary to identify other molecules associated with NRP-1, the increase in cellular motility in IR cells might be due to the contribution of NRP-1. Inhibition of NRP-1 would help control tumor malignancy in radiation-surviving NSCLC.  相似文献   
49.
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin''s peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.  相似文献   
50.
Biphenyl dioxygenase (Bph Dox) catalyzes the initial oxygenation of biphenyl and related compounds. Bph Dox is a multicomponent enzyme in which a large subunit (encoded by the bphA1 gene) is significantly responsible for substrate specificity. By using the process of DNA shuffling of bphA1 of Pseudomonas pseudoalcaligenes KF707 and Burkholderia cepacia LB400, a number of evolved Bph Dox enzymes were created. Among them, an Escherichia coli clone expressing chimeric Bph Dox exhibited extremely enhanced benzene-, toluene-, and alkylbenzene-degrading abilities. In this evolved BphA1, four amino acids (H255Q, V258I, G268A, and F277Y) were changed from the KF707 enzyme to those of the LB400 enzyme. Subsequent site-directed mutagenesis allowed us to determine the amino acids responsible for the degradation of monocyclic aromatic hydrocarbons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号