首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   88篇
  2022年   9篇
  2021年   33篇
  2020年   10篇
  2019年   26篇
  2018年   38篇
  2017年   24篇
  2016年   45篇
  2015年   52篇
  2014年   72篇
  2013年   94篇
  2012年   137篇
  2011年   137篇
  2010年   80篇
  2009年   69篇
  2008年   123篇
  2007年   115篇
  2006年   110篇
  2005年   88篇
  2004年   95篇
  2003年   85篇
  2002年   73篇
  2001年   29篇
  2000年   20篇
  1999年   24篇
  1998年   18篇
  1997年   27篇
  1996年   20篇
  1995年   14篇
  1994年   16篇
  1993年   9篇
  1992年   26篇
  1991年   23篇
  1990年   21篇
  1989年   15篇
  1988年   15篇
  1987年   12篇
  1986年   7篇
  1985年   13篇
  1984年   11篇
  1983年   8篇
  1982年   8篇
  1980年   3篇
  1979年   7篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1905条查询结果,搜索用时 31 毫秒
151.
Among polygenes conferring susceptibility to type 1 diabetes in the NOD mouse, Idd10 on distal chromosome 3 has been shown to be important for disease susceptibility. In this study, we investigated the candidacy of Fcgr1 and Cd101 for Idd10, by congenic mapping and candidate gene sequencing. Among seven NOD-related strains studied, the IIS mouse was found to possess a recombinant Idd10 interval with the same sequence at Fcgr1 as the NOD mouse, but a different sequence at Cd101 from that in the NOD mouse with 10 amino acid substitutions. The frequency of type 1 diabetes in NOD mice congenic for IIS Idd10 (NOD.IISIdd10) was significantly reduced as compared to that in the NOD mouse, despite the presence of the identical Fcgr1 sequence. These data indicate that IIS mice possess a resistant allele at Idd10, and suggest that Cd101, but not Fcgr1, is responsible for the Idd10 effect.  相似文献   
152.
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins) are a family of monomeric adaptor proteins involved in membrane trafficking from the trans-Golgi network to endosomes. The GAT (GGA and Tom1) domains of GGAs have previously been shown to interact with GTP-bound ARF and to be crucial for membrane recruitment of GGAs. Here we show that the C-terminal subdomain of the GAT domain, which is distinct from the N-terminal GAT subdomain responsible for ARF binding, can bind ubiquitin. The binding is mediated by interactions between residues on one side of the alpha3 helix of the GAT domain and those on the so-called Ile-44 surface patch of ubiquitin. The binding of the GAT domain to ubiquitin can be enhanced by the presence of a GTP-bound form of ARF. Furthermore, GGA itself is ubiquitinated in a manner dependent on the GAT-ubiquitin interaction. These results delineate the molecular basis for the interaction between ubiquitin and GAT and suggest that GGA-mediated trafficking is regulated by the ubiquitin system as endosomal trafficking mediated by other ubiquitin-binding proteins.  相似文献   
153.
154.
T cell death-associated gene 8 (TDAG8) has been reported to be a receptor for psychosine. Ovarian cancer G-protein-coupled receptor 1 (OGR1) and GPR4, G-protein-coupled receptors (GPCRs) closely related to TDAG8, however, have recently been identified as proton-sensing or extracellular pH-responsive GPCRs that stimulate inositol phosphate and cAMP production, respectively. In the present study, we examined whether TDAG8 senses extracellular pH change. In the several cell types that were transfected with TDAG8 cDNA, cAMP was markedly accumulated in response to neutral to acidic extracellular pH, with a peak response at approximately pH 7.0-6.5. The pH effect was inhibited by copper ions and was reduced or lost in cells expressing mutated TDAG8 in which histidine residues were changed to phenylalanine. In the membrane fractions prepared from TDAG8-transfected cells, guanosine 5'-O-(3-thiotriphosphate) binding activity and adenylyl cyclase activity were remarkably stimulated in response to neutral and acidic pH. The concentration-dependent effect of extracellular protons on cAMP accumulation was shifted to the right in the presence of psychosine. The inhibitory psychosine effect was also observed for pH-dependent actions in OGR1- and GPR4-expressing cells but not for prostaglandin E(2)- and sphingosine 1-phosphate-induced actions in any pH in native and sphingosine 1-phosphate receptor-expressing cells. Glucosylsphingosine and sphingosylphosphorylcholine similarly inhibited the pH-dependent action, although to a lesser extent. Psychosine-sensitive and pH-dependent cAMP accumulation was also observed in mouse thymocytes. We concluded that TDAG8 is one of the proton-sensing GPCRs coupling to adenylyl cyclase and psychosine, and its related lysosphingolipids behave as if they were antagonists against protein-sensing receptors, including TDAG8, GPR4, and OGR1.  相似文献   
155.
When skin fibroblasts were cultured on fibrillar collagen I gel, we observed rapid degradation of talin, fodrin and ezrin, which are well-known calpain substrates. The protease m-calpain was activated only in cells adhering to fibrillar collagen, whereas micro-calpain was activated in cells adhering to monomeric or fibrillar collagen at the same level. The calpain inhibitor Z-Leu-Leu-aldehyde inhibited degradation of fodrin, but not talin. Degradation of fodrin, alpha-actinin and ezrin was prevented by over-expression of dominant negative m-calpain. However, over-expression of calpastatin, an endogenous calpain inhibitor, had no effect the degradation of these three proteins. These results suggest that m-calpain is responsible for degradation of their membrane proteins via adhesion to fibrillar collagen I gel.  相似文献   
156.
Following the report that agmatine has an anti-proliferative effect on cell growth through induction of antizyme [Satriano et al. (1998) J. Biol. Chem. 273, 15313-15316], we examined the effects of 16 different diamines on cell growth. Many diamines had little or no effect on cell growth, but agmatine and 1,6-hexanediamine had anti-proliferative effects, with agmatine having the strongest effect. Inhibition of cell growth occurred after 2 days, and inhibitory effects paralleled the degree of antizyme induction. Decreased spermine levels indicated that induction of spermidine/spermine N(1)-acetyltransferase was also involved in the inhibition of cell growth by agmatine and 1,6-hexanediamine. The frameshift efficiency (ratio of antizyme synthesis with or without frameshift) measured in a rabbit reticulocyte cell-free system was also increased by 1,3-propanediamine and cis-1,4-cyclohexanediamine in addition to agmatine and 1,6-hexanediamine. However, the intracellular levels of 1,3-propanediamine and cis-1,4-cyclohexanediamine were low when these compounds were added to the cell-culture medium. Other diamines had no effect on cell growth or frameshift efficiency. The results suggest that the presence of two amino-groups separated by an appropriate distance is important for the enhancement of frameshifting by diamines.  相似文献   
157.
Prolonged activation of metabotropic glutamate receptor 5a (mGluR5a) causes synchronized oscillations in intracellular calcium, inositol 1,4,5-trisphosphate production, and protein kinase C (PKC) activation. Additionally, mGluR5 stimulation elicited cyclical translocations of myristoylated alanine-rich protein kinase C substrate, which were opposite to that of gammaPKC (i.e. from plasma membrane to cytosol) and dependent on PKC activity, indicating that myristoylated alanine-rich protein kinase C substrate is repetitively phosphorylated by oscillating gammaPKC on the plasma membrane. Mutation of mGluR5 Thr(840) to aspartate abolished the oscillation of gammaPKC, but the mutation to alanine (T840A) did not. Cotransfection of gammaPKC with betaIIPKC, another Ca2+-dependent PKC, resulted in synchronous oscillatory translocation of both classical PKCs. In contrast, cotransfection of deltaPKC, a Ca2+-independent PKC, abolished the oscillations of both gammaPKC and inositol 1,4,5-trisphosphate. Regulation of the oscillations was dependent on deltaPKC kinase activity but not on gammaPKC. Furthermore, the T840A-mGluR5-mediated oscillations were not blocked by the deltaPKC overexpression. These results revealed that activation of mGluR5 causes translocation of both gammaPKC and deltaPKC to the plasma membrane. deltaPKC, but not gammaPKC, phosphorylates mGluR5 Thr(840), leading to the blockade of both Ca2+ oscillations and gammaPKC cycling. This subtype-specific targeting proposes the molecular basis of the multiple functions of PKC.  相似文献   
158.
We previously reported a new in vivo model named as "GFP/CCl(4) model" for monitoring the transdifferentiation of green fluorescent protein (GFP) positive bone marrow cell (BMC) into albumin-positive hepatocyte under the specific "niche" made by CCl(4) induced persistent liver damage, but the subpopulation which BMCs transdifferentiate into hepatocytes remains unknown. Here we developed a new monoclonal antibody, anti-Liv8, using mouse E 11.5 fetal liver as an antigen. Anti-Liv8 recognized both hematopoietic progenitor cells in fetal liver at E 11.5 and CD45-positive hematopoietic cells in adult bone marrow. We separated Liv8-positive and Liv8-negative cells and then transplanted these cells into a continuous liver damaged model. At 4 weeks after BMC transplantation, more efficient repopulation and transdifferentiation of BMC into hepatocytes were seen with Liv8-negative cells. These findings suggest that the subpopulation of Liv8-negative cells includes useful cells to perform cell therapy on repair damaged liver.  相似文献   
159.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   
160.
Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号