首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1607篇
  免费   73篇
  2023年   11篇
  2022年   18篇
  2021年   41篇
  2020年   14篇
  2019年   32篇
  2018年   45篇
  2017年   34篇
  2016年   49篇
  2015年   59篇
  2014年   71篇
  2013年   83篇
  2012年   125篇
  2011年   125篇
  2010年   78篇
  2009年   65篇
  2008年   110篇
  2007年   111篇
  2006年   93篇
  2005年   74篇
  2004年   82篇
  2003年   79篇
  2002年   72篇
  2001年   28篇
  2000年   14篇
  1999年   16篇
  1998年   14篇
  1997年   21篇
  1996年   16篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   10篇
  1991年   8篇
  1990年   7篇
  1989年   6篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   8篇
  1981年   3篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有1680条查询结果,搜索用时 441 毫秒
71.
Protease-activated receptor-2 (PAR-2) is abundantly expressed in gastric mucosal chief cells, facilitating pepsinogen secretion. In the present study, we investigated whether PAR-1, a thrombin receptor, could modulate pepsinogen secretion in rats. The PAR-1-activating peptide TFLLR-NH(2) as well as the PAR-2-activating peptide SLIGRL-NH(2), administered i.v. repeatedly at 1-h intervals, significantly increased gastric pepsinogen secretion over 2-4 h (after two to four doses). In contrast, the control peptide FTLLR-NH(2), given in the same manner, had no such effect. Thus, PAR-1, like PAR-2, might function to facilitate pepsinogen secretion, suggesting a novel role of the thrombin-PAR-1-pathway in the stomach.  相似文献   
72.
The coordinated migration of neurons is a pivotal step for functional architectural formation of the mammalian brain. To elucidate its molecular mechanism, gene transfer by means of in utero electroporation was applied in the developing murine brain, revealing the crucial roles of Rac1, its activators, STEF/Tiam1, and its downstream molecule, c-Jun N-terminal kinase (JNK), in the cerebral cortex. Functional repression of these molecules resulted in inhibition of radial migration of neurons without affecting their proper differentiation. Interestingly, distinct morphological phenotypes were observed; suppression of Rac1 activity caused loss of the leading process, whereas repression of JNK activity did not, suggesting the complexity of the signaling cascade. In cultured neurons from the intermediate zone, activated JNK was detected along microtubules in the processes. Application of a JNK inhibitor caused irregular morphology and increased stable microtubules in processes, and decreased phosphorylation of microtubule associated protein 1B, raising a possibility of the involvement of JNK in controlling tubulin dynamics in migrating neurons. Our data thus provide important clues for understanding the intracellullar signaling machinery for cortical neuronal migration.  相似文献   
73.
74.
It has been shown that intracerebroventricular injection of synthetic orexins stimulated food intake in rats. This pharmacological evidence suggests that orexins may have a role for the central regulation of feeding. In the present study, we investigated the hypothesis of whether endogenous orexins indeed play a vital role in feeding behavior. An anti-orexin polyclonal antibody was used throughout the study. First, we examined the specificity of the antibody to orexin by Western blot analysis and immunohistochemistry. Next, the effects of central injection of the orexin antibody on food intake in 24-h-fasted rats were evaluated. Western blot analysis revealed that the orexin antibody detected synthetic orexin-A. Immunohistochemical study showed that orexin-positive neurons were identified only in the lateral hypothalamic area, in agreement with previous reports. Neither control antibody nor the orexin antibody preabsorbed with excess amount of orexin-A detected neurons, indicating that the orexin antibody is specific. Intracisternal but not intraperitoneal injection of the orexin antibody dose-dependently suppressed feeding. All these results suggest that immunoneutralization of endogenous orexins in the brain reduced food intake. In other words, we suggest that endogenous brain orexin may have a physiologically relevant action on feeding behavior.  相似文献   
75.
Guinea pig caecal circular smooth muscle cells were used to determine whether brain natriuretic peptide (BNP) can inhibit the contractile response produced by cholecystokinin-octapeptide (CCK-8). In addition, we examined the effect of an inhibitor of cAMP-dependent protein kinase, an inhibitor of particulate or soluble guanylate cyclase, an atrial natriuretic peptide (ANP) antagonist (ANP 1-11), and selective receptor protection on the BNP-induced relaxation of these muscle cells. The effect of BNP on cAMP formation was also examined. BNP inhibited the contractile response produced by CCK-8 in a dose-response manner, with an IC50 value of 8.5 nM, and stimulated the production of cAMP. The inhibitor of cAMP-dependent protein kinase and the inhibitor of soluble guanylate cyclase significantly inhibited the relaxation produced by BNP. In contrast, the inhibitor of particulate guanylate cyclase did not have any significant effect on the relaxation produced by BNP. ANP 1-11 significantly but partially inhibited the relaxation produced by BNP. The muscle cells where CCK-8 and ANP binding sites were protected completely preserved the inhibitory response to ANP, but partially preserved the inhibitory response to BNP. The muscle cells where CCK-8 and BNP binding sites were protected completely preserved the inhibitory response to both ANP and BNP. This study demonstrates that BNP induces relaxation of these muscle cells via both ANP binding sites coupled to soluble guanylate cyclase and distinct BNP binding sites coupled to adenylate cyclase.  相似文献   
76.
77.
The behavior of centrioles in zygotes and female gametes developing parthenogenetically in the anisogamous brown alga Cutieria cyiindrica Okamura was studied using electron and immunofluorescence microscopy. Two pairs of centrioles, detected using anti-centrin antibody, were observed in the vicinity of the male and female nuclei, respectively, just after plasmogamy. The fluorescence intensity of one of the two centrin foci became weak 6 h after plasmogamy and finally disappeared. It was impossible to determine whether the male- or female-derived centrioles disappeared in zygotes, because there was nothing to detect morphological differences between the two centrioles. However, a prominent anti-centrin staining focus was located at the condensed male nucleus in zygotes in which karyogamy had not occurred yet. As a result, it was considered that the maternally inherited centrioles had selectively disappeared during development in C. cylindrica. The paternal inheritance of centrioles in zygotes was also confirmed by electron microscopy. Considering previous observations from oogamous and isogamous species of brown algae, we concluded that the paternal inheriance of centrioles could be universal in the brown algae.  相似文献   
78.
79.
80.

Background

The filamentous fungus Trichoderma reesei (anamorph of Hypocrea jecorina) produces increased cellulase expression when grown on cellulose or its derivatives as a sole carbon source. It has been believed that β-glucosidases of T. reesei not only metabolize cellobiose but also contribute in the production of inducers of cellulase gene expression by their transglycosylation activity. The cellulase hyper-producing mutant PC-3-7 developed in Japan has enhanced cellulase production ability when cellobiose is used as the inducer. The comparative genomics analysis of PC-3-7 and its parent revealed a single-nucleotide mutation within the bgl2 gene encoding intracellular β-glucosidase II (BGLII/Cel1a), giving rise to an amino acid substitution in PC-3-7, which could potentially account for the enhanced cellulase expression when these strains are cultivated on cellulose and cellobiose.

Results

To analyze the effects of the BGLII mutation in cellulase induction, we constructed both a bgl2 revertant and a disruptant. Enzymatic analysis of the transformant lysates showed that the strain expressing mutant BGLII exhibited weakened cellobiose hydrolytic activity, but produced some transglycosylation products, suggesting that the SNP in bgl2 strongly diminished cellobiase activity, but did not result in complete loss of function of BGLII. The analysis of the recombinant BGLII revealed that transglycosylation products might be oligosaccharides, composed probably of glucose linked β-1,4, β-1,3, or a mixture of both. PC-3-7 revertants of bgl2 exhibited reduced expression and inducibility of cellulase during growth on cellulose and cellobiose substrates. Furthermore, the effect of this bgl2 mutation was reproduced in the common strain QM9414 in which the transformants showed cellulase production comparable to that of PC-3-7.

Conclusion

We conclude that BGLII plays an important role in cellulase induction in T. reesei and that the bgl2 mutation in PC-3-7 brought about enhanced cellulase expression on cellobiose. The results of the investigation using PC-3-7 suggested that other mutation(s) in PC-3-7 could also contribute to cellulase induction. Further investigation is essential to unravel the mechanism responsible for cellulase induction in T. reesei.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号