首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1736篇
  免费   213篇
  国内免费   9篇
  2022年   6篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   21篇
  2017年   15篇
  2016年   35篇
  2015年   91篇
  2014年   87篇
  2013年   94篇
  2012年   128篇
  2011年   113篇
  2010年   93篇
  2009年   68篇
  2008年   90篇
  2007年   70篇
  2006年   83篇
  2005年   75篇
  2004年   64篇
  2003年   71篇
  2002年   58篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   16篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   20篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1958条查询结果,搜索用时 265 毫秒
991.

Objective

There is limited epidemiological data on the seasonality of respiratory syncytial virus (RSV) infection in subtropical climates, such as in Taiwan. This study aimed to assess RSV seasonality among children ≤24 months of age in Taiwan. We also assessed factors (gestational age [GA], chronologic age [CA], and bronchopulmonary dysplasia [BPD]) associated with RSV-associated hospitalization in preterm infants to confirm the appropriateness of the novel Taiwanese RSV prophylactic policy.

Study Design

From January 2000 to August 2010, 3572 children aged ≤24-months were admitted to Taipei Mackay Memorial Hospital due to RSV infection. The monthly RSV-associated hospitalization rate among children aged ≤24 months was retrospectively reviewed. Among these children, 378 were born preterm. The associations between GA, CA, and BPD and the incidence of RSV-associated hospitalization in the preterm infants were assessed.

Results

In children aged ≤24 months, the monthly distribution of RSV-associated hospitalization rates revealed a prolonged RSV season with a duration of 10 months. Infants with GAs ≤32 weeks and those who had BPD had the highest rates of RSV hospitalization (P<0.001). Preterm infants were most vulnerable to RSV infection within CA 9 months.

Conclusions

Given that Taiwan has a prolonged (10-month) RSV season, the American Academy of Pediatrics'' recommendations for RSV prophylaxis are not directly applicable. The current Taiwanese guidelines for RSV prophylaxis, which specify palivizumab injection (a total six doses until CA 8–9 months) for preterm infants (those born before 286/7 weeks GA or before 356/7 weeks GA with BPD), are appropriate. This prophylaxis strategy may be applicable to other countries/regions with subtropical climates.  相似文献   
992.
Novel nanocomposites based on type I collagen (Col) containing a small amount (17.4, 43.5, and 174 ppm) of gold nanoparticles (AuNPs, approximately 5 nm) were prepared in this study. The pure Col and Col-AuNP composites (Col-Au) were characterized by the UV-Vis spectroscopy (UV-Vis), surface-enhanced raman spectroscopy (SERS) and atomic force microscopy (AFM). The interaction between Col and AuNPs was confirmed by infrared (IR) spectra. The effect of AuNPs on the biocompatibility of Col, evaluated by the proliferation and reactive oxygen species (ROS) production of mesenchymal stem cells (MSCs) as well as the activation of monocytes and platelets, was investigated. Results showed that Col-Au had better biocompatibility than Col. Upon stimulation by vascular endothelial growth factor (VEGF) and stromal derived factor-1α (SDF-1α), MSCs expressed the highest levels of αvβ3 integrin/CXCR4, focal adhesion kinase (FAK), matrix metalloproteinase-2 (MMP-2), and Akt/endothelial nitric oxide synthase (eNOS) proteins when grown on the Col-Au (43.5 ppm) nanocomposite. Taken together, Col-Au nanocomposites may promote the proliferation and migration of MSCs and stimulate the endothelial cell differentiation. These results suggest that Col-Au may be used to construct tissue engineering scaffolds for vascular regeneration.  相似文献   
993.
The role of nerve growth factor (NGF) in liver injury induced by bile duct ligation (BDL) remains elusive. This study aimed to investigate the relationship between inflammation and hepatic NGF expression, to explore the possible upstream molecules up-regulating NGF, and to determine whether NGF could protect hepatocytes from oxidative liver injury. Biochemical and molecular detection showed that NGF was up-regulated in cholestatic livers and plasma, and well correlated with systemic and hepatic inflammation. Conversely, systemic immunosuppression reduced serum NGF levels and resulted in higher mortality in BDL-treated mice. Immunohistochemistry showed that the up-regulated NGF was mainly localized in parenchymal hepatocytes. In vitro mechanistic study further demonstrated that TGF-β1 up-regulated NGF expression in clone-9 and primary rat hepatocytes. Exogenous NGF supplementation and endogenous NGF overexpression effectively protected hepatocytes against TGF-β1- and oxidative stress-induced cell death in vitro, along with reduced formation of oxidative adducted proteins modified by 4-HNE and 8-OHdG. TUNEL staining confirmed the involvement of anti-apoptosis in the NGF-exhibited hepatoprotection. Moreover, NGF potently induced Akt phosphorylation and increased Bcl-2 to Bax ratios, whereas these molecular alterations by NGF were only seen in the H2O2-, but not TGF-β1-treated hepatocytes. In conclusion, NGF exhibits anti-oxidative and hepatoprotective effects and is suggested to be therapeutically applicable in treating cholestatic liver diseases.  相似文献   
994.

Background

High tidal volume (VT) mechanical ventilation (MV) can induce the recruitment of neutrophils, release of inflammatory cytokines and free radicals, and disruption of alveolar epithelial and endothelial barriers. It is proposed to be the triggering factor that initiates ventilator-induced lung injury (VILI) and concomitant hyperoxia further aggravates the progression of VILI. The Src protein tyrosine kinase (PTK) family is one of the most critical families to intracellular signal transduction related to acute inflammatory responses. The anti-inflammatory abilities of induced pluripotent stem cells (iPSCs) have been shown to improve acute lung injuries (ALIs); however, the mechanisms regulating the interactions between MV, hyperoxia, and iPSCs have not been fully elucidated. In this study, we hypothesize that Src PTK plays a critical role in the regulation of oxidants and inflammation-induced VILI during hyperoxia. iPSC therapy can ameliorate acute hyperoxic VILI by suppressing the Src pathway.

Methods

Male C57BL/6 mice, either wild-type or Src-deficient, aged between 2 and 3 months were exposed to high VT (30 mL/kg) ventilation with or without hyperoxia for 1 to 4 h after the administration of Oct4/Sox2/Parp1 iPSCs at a dose of 5×107 cells/kg of mouse. Nonventilated mice were used for the control groups.

Results

High VT ventilation during hyperoxia further aggravated VILI, as demonstrated by the increases in microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 (MIP-2) and plasminogen activator inhibitor-1 (PAI-1) production, Src activation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and malaldehyde (MDA) level. Administering iPSCs attenuated ALI induced by MV during hyperoxia, which benefited from the suppression of Src activation, oxidative stress, acute inflammation, and apoptosis, as indicated by the Src-deficient mice.

Conclusion

The data suggest that iPSC-based therapy is capable of partially suppressing acute inflammatory and oxidant responses that occur during hyperoxia-augmented VILI through the inhibition of Src-dependent signaling pathway.  相似文献   
995.
Yuan SS  Chang HL  Chen HW  Yeh YT  Kao YH  Lin KH  Wu YC  Su JH 《Life sciences》2003,72(25):2853-2861
Annonaceous acetogenins are a group of potential anti-neoplastic agents isolated from Annonaceae plants. In this study, we purified annonacin, a cytotoxic mono-tetrahydrofuran acetogenin, from the seeds of Annona reticulata and analyzed its biological effects. Herein, we have shown that annonacin caused significant cell death in various cancer cell lines. T24 bladder cancer cells at the S phase were more vulnerable to the cytotoxicity of annonacin. Furthermore, annonacin activated p21 in a p53-independent manner and arrested T24 cells at the G1 phase. It also induced Bax expression, enhanced caspase-3 activity, and caused apoptotic cell death in T24 cells. In summary, these results suggest that annonacin is potentially a promising anti-cancer compound.  相似文献   
996.
This study was designed to evaluate biochemical changes in the fatty acid (FA) compositions of selected lipid depot (kidney and liver) and absorption (intestine) organs in larvae and metamorphosing sea lamprey, Petromyzon marinus. Palmitic or stearic acids were generally the predominant saturated fatty acids (SFA) before and during metamorphosis, but the greatest proportion of myristic acid occurred in renal triacylglycerol (TG). Monoenes, dienes, and polyenes consist mainly of 16:1, 18:1, and 20:1, 18:2 and 20:2omega6, and 18:4omega3, respectively. Alterations in these predominant fatty acids occurred during lamprey metamorphosis, but depended on tissue, lipid class, and developmental status. During metamorphosis, kidney TG and phospholipid (PL) classes tended to mobilize SFA and enhance the fatty acid unsaturation, as indicated by increased unsaturated/saturated ratio, unsaturation index (USI), and total mean chain length (MCL). There was a tendency to increase saturation in the fatty acids of liver TG and PL classes and intestine TG, FA and monoacylglycerol (MG) classes, but to increase unsaturation in the fatty acids of liver cholesteryl ester (CE), FA and MG classes and intestine PL and CE classes from larva or stage 3 to stage 7. Increased polyunsaturated fatty acids in kidney TG and PL from larvae to stage 5 transformers and intestine PL and CE from stage 3 to stage 7 transformers may reflect an osmoregulatory pre-adaptation. The presence of branched-chain SFA (BCSFA) and the odd number of fatty acids (ONFA) indicated a significant role of detritivores in the benthic larvae. Decreased abundance of BCSFA, ONFA, and 18:2 dienes occurred in the transformed intestine TG as non-trophic metamorphosis proceeded. These data suggest that sea lamprey metamorphosis may proceed in a habitat, dietary, osmoregulatory, energetic, and developmental pre-adaptation of fatty acid composition from benthic filter-feeding larvae to pelagic parasitic juveniles.  相似文献   
997.
998.
Kao GS  Chuang JY  Cherng CF  Yu L 《Neuro-Signals》2011,19(4):175-188
Cocaine-conditioned memory has been known to cause cocaine craving and relapse, while its underlying mechanisms remain unclear. We explored accumbal protein candidates responsible for a cocaine-conditioned memory, cocaine-induced conditioned place preference (CPP). Two-dimensional gel electrophoresis in conjunction with liquid chromatography mass spectrometry analysis was utilized to identify accumbal protein candidates involved in the retrieval of cocaine-induced CPP. Among the identified candidate proteins, a downregulated 14-3-3ζ protein was chosen and confirmed by Western immunoblotting. A polymer-mediated plasmid DNA delivery system was then used to overexpress 14-3-3 protein in mouse nucleus accumbens before the CPP retrieval tests. Overexpression of accumbal 14-3-3ζ protein was found to diminish conditioned cue/context-mediated cocaine-induced CPP. In contrast, another isoform of 14-3-3 protein, 14-3-3ε protein, did not affect conditioned cue/context-mediated cocaine-induced CPP. Overexpression of accumbal 14-3-3ζ protein did not produce motor activity-impairing effect or alter local dopamine metabolism. Moreover, overexpression of accumbal 14-3-3ζ protein did not affect food-induced CPP. These results, taken together, indicated that overexpressed accumbal 14-3-3ζ protein specifically decreased conditioned cue/context-mediated cocaine memory. Further understanding of the function of accumbal 14-3-3ζ protein may shed light on the treatment of cocaine craving and relapse.  相似文献   
999.
1000.

Introduction

Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV) remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs.

Methods

Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV) via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration.

Results

Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation.

Conclusions

Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号