首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1744篇
  免费   213篇
  国内免费   9篇
  1966篇
  2022年   12篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   21篇
  2017年   15篇
  2016年   35篇
  2015年   91篇
  2014年   87篇
  2013年   94篇
  2012年   128篇
  2011年   113篇
  2010年   93篇
  2009年   68篇
  2008年   90篇
  2007年   70篇
  2006年   83篇
  2005年   75篇
  2004年   64篇
  2003年   71篇
  2002年   58篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   16篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   20篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1966条查询结果,搜索用时 0 毫秒
951.
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of 14 different subunits (Nqo1-Nqo14). Of these, seven subunits (Nqo7, Nqo8, and Nqo10-14) which are equivalent to the mitochondrial DNA-encoded subunits of complex I constitute the membrane segment of the enzyme complex; the remaining subunits make up the peripheral part of the enzyme. We report here on the biochemical characterization and heterologus expression of the Nqo10 subunit. The Nqo10 subunit could not be extracted from the Paracoccus membranes by NaI or alkaline treatment, which is consistent with the presumed membrane localization. By using the maltose-binding protein (MBP) fusion system, the Nqo10 subunit was overexpressed in Escherichia coli. The MBP-fused Nqo10 was expressed in membrane fractions of the host cell and was extractable by Triton X-100. The extracted fusion protein was then isolated by one-step affinity purification through an amylose column. By using immunochemical methods in conjunction with cysteine-scanning mutagenesis and chemical modification techniques, the topology of the Nqo10 subunit expressed in E. coli membranes was determined. The data indicate that the Nqo10 subunit consists of five transmembrane segments with the N- and C-terminal regions facing the periplasmic and cytoplasmic sides of the membrane, respectively. In addition, the data also suggest that the proposed topology of the MBP-fused Nqo10 subunit expressed in E. coli membranes is consistent with that of the Nqo10 subunit in the native Paracoccus membranes. From the experimentally determined topology together with computer prediction programs, a topological model for the Nqo10 subunit is proposed.  相似文献   
952.
953.
Successful treatment of brain tumors such as glioblastoma multiforme (GBM) is limited in large part by the cumulative dose of Radiation Therapy (RT) that can be safely given and the blood-brain barrier (BBB), which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs). GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ∼1.3). Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.  相似文献   
954.
Protein kinase C-theta (PKCtheta) is critical for TCR-initiated signaling in mature T cells, but initial reports found no requirement for PKCtheta in thymocyte development. Thymocytes and peripheral T cells utilize many of the same signaling components and, given the significant role of PKCtheta in peripheral T cells, it was surprising that it was not involved at all in TCR signaling in thymocytes. We decided to re-evaluate the role of PKCtheta in thymocyte development using the well-characterized class II-restricted n3.L2 TCR-transgenic TCR model. Analysis of n3.L2 PKCtheta(-/-) mice revealed a defect in thymocyte-positive selection, resulting in a 50% reduction in the generation of n3.L2 CD4 single-positive thymocytes and n3.L2 CD4 mature T cells. Competition between n3.L2 WT and n3.L2 PKCtheta(-/-) thymocytes in bone marrow chimeras revealed a more dramatic defect, with a >80% reduction in generation of n3.L2 CD4 single-positive thymocytes derived from PKCtheta(-/-) mice. Inefficient positive selection of n3.L2 PKCtheta(-/-) CD4 single-positive cells resulted from "weaker" signaling through the TCR and correlated with diminished ERK activation. The defect in positive selection was not complete in the PKCtheta(-/-) mice, most likely accounted for by compensation by other PKC isoforms not evident in peripheral cells. Similar decreased positive selection of both CD4 and CD8 single-positive thymocytes was also seen in nontransgenic PKCtheta(-/-) mice. These findings now place PKCtheta as a key signaling molecule in the positive selection of thymocytes as well as in the activation of mature T cells.  相似文献   
955.
956.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. Recently, two benzo-1,2,4-thiadiazine compounds were shown to be potent, highly specific inhibitors of the genotype 1b HCV RdRp containing a carboxyl-terminal 21 residue truncation (delta21 HCV RdRp) (Dhanak, D., Duffy, K., Johnston, V. K., Lin-Goerke, J., Darcy, M., Shaw, A. N. G. B., Silverman, C., Gates, A. T., Earnshaw, D. L., Casper, D. J., Kaura, A., Baker, A., Greenwood, C., Gutshall, L. L., Maley, D., DelVecchio, A., Macarron, R., Hofmann, G. A., Alnoah, Z., Cheng, H.-Y., Chan, G., Khandekar, S., Keenan, R. M., and Sarisky, R. T. (2002) J. Biol. Chem. 277, 38322-38327). Compound 4 (C(21)H(21)N(3)O(4)S) reduces viral replication by virtue of its direct interaction with the viral polymerase rather than by nonspecific titration of nucleic acid template. In this study, we present several lines of evidence to demonstrate that this inhibitor interferes with the initiation step of RNA synthesis rather than acting as an elongation inhibitor. Inhibition of initial phosphodiester bond formation occurred regardless of whether replication was initiated by primer-dependent or de novo mechanisms. Filter binding studies using increasing concentrations of compound 4 did not interfere with the ability of delta21 HCV RdRp to interact with nucleic acid. Furthermore, varying the order of reagent addition in the primer extension assay showed no distinct differences in inhibition profile. Finally, surface plasmon resonance analyses provided evidence that a ternary complex is capable of forming between the RNA template, RdRp, and compound 4. Together, these data suggest that this heterocyclic agent interacts with the apoenzyme, as well as with the RNA-bound form of delta21 HCV RdRp, and therefore does not directly interfere with the RdRp-RNA interaction to mediate inhibition.  相似文献   
957.
Chen MH  Roossinck MJ  Kao CC 《Journal of virology》2000,74(23):11201-11209
We defined the minimal core promoter sequences responsible for efficient and accurate initiation of cucumber mosaic virus (CMV) subgenomic RNA4. The necessary sequence maps to positions -28 to +15 relative to the initiation cytidylate used to initiate RNA synthesis in vivo. Positions -28 to -5 contain a 9-bp stem and a 6-nucleotide purine-rich loop. Considerable changes in the stem and the loop are tolerated for RNA synthesis, including replacement with a different stem-loop. In a template competition assay, the stem-loop and the initiation cytidylate are sufficient to interact with the CMV replicase. Thus, the mechanism of core promoter recognition by the CMV replicase appears to be less specific in comparison to the minimal subgenomic core promoter of the closely related brome mosaic virus.  相似文献   
958.
Protein palmitoylation has emerged as an important mechanism for regulating protein trafficking, stability, and protein–protein interactions; however, its relevance to disease processes is not clear. Using a genome-wide, phenotype driven N-ethyl-N-nitrosourea–mediated mutagenesis screen, we identified mice with failure to thrive, shortened life span, skin and hair abnormalities including alopecia, severe osteoporosis, and systemic amyloidosis (both AA and AL amyloids depositions). Whole-genome homozygosity mapping with 295 SNP markers and fine mapping with an additional 50 SNPs localized the disease gene to chromosome 7 between 53.9 and 56.3 Mb. A nonsense mutation (c.1273A>T) was located in exon 12 of the Zdhhc13 gene (Zinc finger, DHHC domain containing 13), a gene coding for palmitoyl transferase. The mutation predicted a truncated protein (R425X), and real-time PCR showed markedly reduced Zdhhc13 mRNA. A second gene trap allele of Zdhhc13 has the same phenotypes, suggesting that this is a loss of function allele. This is the first report that palmitoyl transferase deficiency causes a severe phenotype, and it establishes a direct link between protein palmitoylation and regulation of diverse physiologic functions where its absence can result in profound disease pathology. This mouse model can be used to investigate mechanisms where improper palmitoylation leads to disease processes and to understand molecular mechanisms underlying human alopecia, osteoporosis, and amyloidosis and many other neurodegenerative diseases caused by protein misfolding and amyloidosis.  相似文献   
959.
960.
Dengue virus (DV) infection is a major problem in public health. It can cause fatal diseases such as Dengue hemorrhagic fever and Dengue shock syndrome. Dendritic cells (DC) are professional APCs required for establishing a primary immune response. Here, we investigated the role of human PBMC-derived DC in DV infection. Using different techniques, including plaque assay, flow cytometry analysis, nested RT-PCR, and confocal microscope and electron microscope examinations, we show that DV can enter cultured human DC and produce virus particles. After entrance, DV could be visualized in cystic vesicles, vacuoles, and the endoplasmic reticulum. The DV-infected DC also showed proliferation and hypertrophy of the endoplasmic reticulum as well as the swollen mitochondria. In addition, the DV-stimulated DC could express maturation markers such as B7-1, B7-2, HLA-DR, CD11b, and CD83. Furthermore, the infection of DC by DV induced production of TNF-alpha and IFN-alpha, but not IL-6 and IL-12. Although DC underwent spontaneous apoptosis in the absence of feeding cytokines, this process appeared to be delayed after DV infection. Our observations provide important information in understanding the pathogenesis of DV infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号