首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有65条查询结果,搜索用时 46 毫秒
61.
K. Godde 《HOMO》2009,60(5):389-404
Many authors have speculated on Nubian biological evolution. Because of the contact Nubians had with other peoples, migration and/or invasion (biological diffusion) were originally thought to be the biological mechanism for skeletal changes in Nubians. Later, a new hypothesis was put forth, the in situ hypothesis. The new hypothesis postulated that Nubians evolved in situ, without much genetic influence from foreign populations. This study examined 12 Egyptian and Nubian groups in an effort to explore the relationship between the two populations and to test the in situ hypothesis. Data from nine cranial nonmetric traits were assessed for an estimate of biological distance, using Mahalanobis D2 with a tetrachoric matrix. The distance scores were then input into principal coordinates analysis (PCO) to depict the relationships between the two populations. PCO detected 60% of the variation in the first two principal coordinates. A plot of the distance scores revealed only one cluster; the Nubian and Egyptian groups clustered together. The grouping of the Nubians and Egyptians indicates there may have been some sort of gene flow between these groups of Nubians and Egyptians. However, common adaptation to similar environments may also be responsible for this pattern. Although the predominant results in this study appear to support the biological diffusion hypothesis, the in situ hypothesis was not completely negated.  相似文献   
62.
To study the effects of limitations in the Calvin-cycle on Photosystem (PS) II function and on its repair by D1-protein turnover, glycerinaldehyde (DLGA) was applied to 1 h dark-adapted pea leaves via the petiole. The application resulted in a 90% inhibition of photosynthetic oxygen evolution after 90 min illumination at either 120 or 500 µmol m–2 s–1. In the control leaves an increase of light-dependent oxygen production to 147 and 171% was observed after 90 min illumination. According to chlorophyll fluorescence quenching analysis the inhibition of photosynthetic electron transport by DLGA led to a substantial increase in the reduction state of the primary quinone acceptor of PS II, QA, and to a rise in membrane energetisation. However, PS II functionality was hardly affected by DLGA at the low light intensity as indicated by the constant high yield of variable fluorescence, Fv/Fm. Only at 500 µmol m–2 s–1 a 15% loss of Fv/Fm was observed in the presence of DLGA indicating that inactivated PS II centres had accumulated. The control leaves also showed a slight loss of Fv/Fm which did not affect photosynthetic electron transport due to a faster reoxidation of QA. The relative stability of PS II function in the presence of DLGA could not be ascribed to an increased repair by the rapid turnover of the D1-protein. Radioactive pulse-labelling studies with [14C] leucine in combination with immunological determination of the protein content revealed that both synthesis and degradation of the protein were inhibited in DLGA-treated leaves whereas in the control leaves a stimulation of D1-protein turnover was observed. The changes of D1-protein turnover could be explained by differences in the occupancy state of the QB-binding niche. A relation between the phosphorylation status of the PS II polypeptides and the turnover of the D1-protein could not be established. As shown by radioactive labelling with [32P]i, addition of DLGA led to an increase in the phosphorylation level of the PS II polypeptides D1 and D2 at the low light intensity when compared to the non-treated control. At the higher light intensity the phosphorylation level of the PS II polypeptides in control and DLGA-treated leaves were identical in spite of the substantial differences in D1-protein turnover.  相似文献   
63.
In the 1990's, evidence has accumulated that various unfavourable environmental conditions substantially affect the turnover of the D1 protein of reaction centre II, the psb A gene product. Biochemical, molecular and physiological studies in higher plants indicate that alterations of D1 protein turnover occur under drought, nutrition deficiency, heat, chemical stress, ozone fumigation as well as UV-B and visible photo-stresses. The behaviour of photosystem II under these various stress conditions indicates that the response of D1 protein turnover can be interpreted as a general adaptive response to environmental extremes.  相似文献   
64.
The metabolism of 2-bromoethylaminonaphthoquinone in hepatocytes isolated from rats was studied. This compound was chemically inert in the reaction system used. However, in buffer solution containing isolated hepatocytes, it was gradually converted into aziridinylnaphthoquinone. Under the same reaction conditions, 4-chlorobutylaminonaphthoquinone also gave the cyclization products, pyrrolidinylnaphthoquinone. Cellular GSH decreased in both reactions.  相似文献   
65.
NADH-plastoquinone-oxidoreductase bound to the membrane fraction of Chlamydomonas reinhardii CW-15 has been solubilized with triton X-100. By treatment with high concentrations of MgCl2 and KCl and (NH4)2SO4 fractionation the enzyme could be enriched 8–10-fold. Spectral properties indicated a flavoprotein probably containing Fe–S groups. The enzyme oxidizes NADH and NADPH with various quinones as electron acceptors. Plastoquinone 1 is an effective electron acceptor, whereas ubiquinone 1 is only reduced with low activity. The enzyme is sensitive to rotenone and thenoyltrifluoroacetone, both inhibitors of ubiquinone reduction by mitochondrial dehydrogenases. As the bound enzyme is sensitive to inhibitors of photosynthetic electron flow, the enzyme is assumed to be responsible for light driven hydrogen evolution at the expense of NADH generating substrates.Abbreviations BQ benzoquinone - chl chlorophyll - DBMIB dibromothymoquinone - DNP-INT dinitro-phenylether of 2-iodo-4-nitrothymol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - UHDBT 5-n-undecyl-6-hydroxy-4,7-dioxy-benzothiazol - TTFA thenoyltri-fluoroacetone  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号