首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2441篇
  免费   174篇
  2023年   12篇
  2022年   20篇
  2021年   33篇
  2020年   16篇
  2019年   32篇
  2018年   34篇
  2017年   32篇
  2016年   41篇
  2015年   76篇
  2014年   74篇
  2013年   130篇
  2012年   132篇
  2011年   126篇
  2010年   92篇
  2009年   96篇
  2008年   126篇
  2007年   105篇
  2006年   119篇
  2005年   138篇
  2004年   123篇
  2003年   104篇
  2002年   96篇
  2001年   76篇
  2000年   82篇
  1999年   79篇
  1998年   25篇
  1997年   32篇
  1996年   19篇
  1995年   16篇
  1994年   20篇
  1993年   24篇
  1992年   47篇
  1991年   50篇
  1990年   30篇
  1989年   24篇
  1988年   44篇
  1987年   23篇
  1986年   22篇
  1985年   33篇
  1984年   32篇
  1983年   19篇
  1982年   13篇
  1981年   14篇
  1980年   14篇
  1979年   14篇
  1978年   10篇
  1975年   13篇
  1974年   10篇
  1972年   12篇
  1968年   13篇
排序方式: 共有2615条查询结果,搜索用时 15 毫秒
101.
102.
The linear ubiquitin chain assembly complex (LUBAC) plays a crucial role in activating the canonical NF‐κB pathway, which is important for B‐cell development and function. Here, we describe a mouse model (B‐HOIPΔlinear) in which the linear polyubiquitination activity of LUBAC is specifically ablated in B cells. Canonical NF‐κB and ERK activation, mediated by the tumour necrosis factor (TNF) receptor superfamily receptors CD40 and TACI, was impaired in B cells from B‐HOIPΔlinear mice due to defective activation of the IKK complex; however, B‐cell receptor (BCR)‐mediated activation of the NF‐κB and ERK pathways was unaffected. B‐HOIPΔlinear mice show impaired B1‐cell development and defective antibody responses to thymus‐dependent and thymus‐independent II antigens. Taken together, these data suggest that LUBAC‐mediated linear polyubiquitination is essential for B‐cell development and activation, possibly via canonical NF‐κB and ERK activation induced by the TNF receptor superfamily, but not by the BCR.  相似文献   
103.
Several bacteria possess membrane-bound dehydrogenases other than cytosolic dehydrogenases in their respiratory chains. In many cases, the membrane-bound malate:quinone oxidoreductases (MQOs) are essential for growth. However, these MQOs are absent in mammalian mitochondria, and therefore may be a potential drug target for pathogenic bacteria. To characterize the kinetic properties of MQOs, we purified MQO from Bacillus sp. PS3, which is a gram-positive and thermophilic bacterium, and cloned the gene encoding MQO based on the obtained partial N-terminus sequence. Purified MQOs showed a molecular mass of ~90 kDa, which was estimated using gel filtration, and it consists of two subunits with a molecular mass of ~50 kDa. Phylogenetic analysis showed a high similarity to the MQO of the Geobacillus group rather than the Bacillus group. Additionally, the purified enzyme was thermostable and it retained menaquinol reduction activity at high temperatures. Although it is difficult to conduct experiments using menaquinol because of its instability, we were able to measure the oxidase activity of cytochrome bd-type quinol oxidase by using menaquinol-1 by coupling this molecule with the menaquinol reduction reaction using purified MQOs.  相似文献   
104.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
105.
106.
We previously isolated two α-l-arabinofuranosidases (ABFs), termed AFQ1 and AFS1, from the culture filtrate of Penicillium chrysogenum 31B. afq1 and afs1 complementary DNAs encoding AFQ1 and AFS1 were isolated by in vitro cloning. The deduced amino acid sequences of AFQ1 and AFS1 are highly similar to those of Penicillium purpurogenum ABF 2 and ABF 1, respectively, which belong to glycoside hydrolase (GH) families 51 and 54, respectively. Pfam analysis revealed an “Alpha-L-AF_C” domain in AFQ1 and “ArabFuran-catal” and “AbfB” domains in AFS1. Semi-quantitative RT-PCR analysis indicated that the afq1 gene was constitutively expressed in P. chrysogenum 31B at a low level, although the expression was slightly induced with arabinose, arabinitol, arabinan, and arabinoxylan. In contrast, expression of the afs1 gene was strongly expressed by the above four carbohydrates and less strongly induced by galactan. Recombinant enzymes (rAFQ1 and rAFS1) expressed in Escherichia coli were active against both p-nitrophenyl α-l-arabinofuranoside and polysaccharides with different specificities. 1H-NMR analysis revealed that rAFS1 degraded arabinofuranosyl side chains that were both singly and doubly linked to the backbones of arabinoxylan and l-arabinan. On the other hand, rAFQ1 preferentially released arabinose linked to C-3 of single-substituted xylose or arabinose residues in the two polysaccharides.  相似文献   
107.
Rab proteins are small GTPases that play essential roles in vesicle transport. In this study, we examined the expression of Rab proteins and neuropeptide hormones in the brain of the silkworm, Bombyx mori. We produced antibodies against B. mori Rab1 and Rab14 in rabbits. Immunoblotting of samples of brain tissue from B. mori revealed a single band for each antibody. Rab1 and Rab14 immunohistochemical labeling in the brain of B. mori was restricted to neurons of the pars intercerebralis and dorsolateral protocerebrum. Rab1, Rab7 and Rab14 co-localized with bombyxin. Rab1 and Rab7 co-localized with eclosion hormone. Rab1 co-localized with prothoracicotropic hormone. These results suggest that Rab1, Rab7 and Rab14 may be involved in neuropeptide transport in the brain of B. mori. This is the first report on the specificity of Rab proteins for the secretion of different neuropeptides in insects.  相似文献   
108.
This article documents the addition of 83 microsatellite marker loci and 96 pairs of single‐nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bembidion lampros, Inimicus japonicus, Lymnaea stagnalis, Panopea abbreviata, Pentadesma butyracea, Sycoscapter hirticola and Thanatephorus cucumeris (anamorph: Rhizoctonia solani). These loci were cross‐tested on the following species: Pentadesma grandifolia and Pentadesma reyndersii. This article also documents the addition of 96 sequencing primer pairs and 88 allele‐specific primers or probes for Plutella xylostella.  相似文献   
109.
110.
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号