首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   33篇
  2017年   10篇
  2016年   8篇
  2015年   19篇
  2014年   12篇
  2013年   33篇
  2012年   14篇
  2011年   27篇
  2010年   15篇
  2009年   10篇
  2008年   26篇
  2007年   28篇
  2006年   17篇
  2005年   28篇
  2004年   26篇
  2003年   22篇
  2002年   26篇
  2001年   23篇
  2000年   26篇
  1999年   16篇
  1997年   4篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   10篇
  1990年   9篇
  1989年   11篇
  1988年   14篇
  1987年   10篇
  1986年   14篇
  1985年   5篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   10篇
  1980年   5篇
  1979年   7篇
  1978年   4篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1970年   6篇
  1967年   4篇
  1966年   4篇
  1965年   7篇
排序方式: 共有620条查询结果,搜索用时 922 毫秒
81.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   
82.
The elucidation of factors inducing the growth of Plasmodium falciparum can provide critical information about the developmental mechanisms of this parasite and open the way to search for novel targets for malaria chemotherapy. The ability of components of a growth-promoting factor derived from bovine serum and various related substances to sustain growth of P. falciparum was characterized. A simple total lipid fraction (GFS-C) containing non-esterified fatty acids (NEFAs) as essential factors was noted to promote the parasite's growth. Various proteins from a variety of animals were tested, indicating the importance not only of GFS-C, but also of specific proteins, such as bovine and human albumin, in the parasite growth. Several combinations of the NEFAs tested sustained low parasite growth. Among various phospholipids and lysophospholipids tested, lysophosphatidylcholine containing C-18 unsaturated fatty acids was found to sustain the complete development of the parasite in the presence of bovine albumin. Several other lysophospholipids can partially support growth of P. falciparum.  相似文献   
83.
The Na+/H+ antiporter Nha1p of Saccharomyces cerevisiae plays an important role in maintaining intracellular pH and Na+ homeostasis. Nha1p has a two-domain structure composed of integral membrane and hydrophilic tail regions. Overexpression of a peptide of approximately 40 residues (C1+C2 domains) that is localized in the juxtamembrane area of its cytoplasmic tail caused cell growth retardation in highly saline conditions, possibly by decreasing Na+/H+ antiporter activity. A multicopy suppressor gene of this growth retardation was identified from a yeast genome library. The clone encodes a novel membrane protein denoted as COS3 in the genome data base. Overexpression or deletion of COS3 increases or decreases salinity-resistant cell growth, respectively. However, in nha1Delta cells, overexpression of COS3 alone did not suppress the growth retardation. Cos3p and a hydrophilic portion of Cos3p interact with the C1+C2 peptide in vitro, and Cos3p is co-precipitated with Nha1p from yeast cell extracts. Cos3p-GFP mainly resides at the vacuole, but overexpression of Nha1p caused a portion of the Cos3p-GFP proteins to shift to the cytoplasmic membrane. These observations suggest that Cos3p is a novel membrane protein that can enhance salinity-resistant cell growth by interacting with the C1+C2 domain of Nha1p and thereby possibly activating the antiporter activity of this protein.  相似文献   
84.
The Saccharomyces cerevisiae Na(+)/H(+) antiporter Nha1p has a two-domain structure consisting of an N-terminal integral membrane region and a C-terminal cytoplasmic region. We previously identified six distinct cytoplasmic domains (C1-C6) conserved among yeast species and here we performed detailed structure-function analysis of the C1 domain (16 residues). Deletion of the C1 domain causes extensive inhibition of cell-growth under high salinity conditions. Mutants with single residue deletions or various amino acid substitutions affecting the C1 domain were analyzed with respect to salinity-dependent growth and Nha1p localization. The C1 domain was found to consist of two subdomains: (i) The first three N-proximal residues, which in conjunction with the integral membrane region play a crucial role in the targeting of Nha1p to the cytoplasmic membrane, and (ii) the portion between Leu-439 and Thr-449, which is not required for localization, but in which four residues (Gly-440, Arg-441, His-442, and Ile-446) affect salinity-sensitive cell-growth by possibly influencing the antiporter activity. Based on the overall similarity of the two-domain structure of Nha1p to that of mammalian Na(+)/H(+) antiporters, the functional importance of domains proximal to the membrane region is discussed.  相似文献   
85.
Specific inhibition of hepatitis C virus replication by cyclosporin A   总被引:13,自引:0,他引:13  
The difficulty in eradicating hepatitis C virus (HCV) infection is attributable to the limited treatment options against the virus. Recently, cyclosporin A (CsA), a widely used immunosuppressive drug, has been reported to be effective against HCV infection [J. Gastroenterol. 38 (2003) 567], although little is understood about the mechanism of its action against HCV. In this study, we investigated the anti-viral effects of CsA using an HCV replicon system. Human hepatoma Huh7 cells were transfected with an HCV replicon expressing a chimeric gene encoding a luciferase reporter and neomycin phosphotransferase (Huh7/Rep-Feo). Treatment of the Huh7/Rep-Feo cells with CsA resulted in suppression of the replication of the HCV replicon in a dose-dependent manner, with an IC50 of approximately 0.5 microg/ml. There were no changes in the rate of cell growth or viability, suggesting that the effect of CsA against HCV is specific and not due to cytotoxicity. In contrast, FK506, another immunosuppressive drug, did not suppress HCV replication. CsA did not activate interferon-stimulated gene responses, suggesting that its action is independent of that of interferon. In conclusion, CsA inhibits HCV replication in vitro specifically at clinical concentrations. Further defining its mode of action against HCV replication potentially may be important for identifying novel molecular targets to treat HCV infection.  相似文献   
86.
NK cells are potent activators of dendritic cells (DCs), but it remains obscure how third-party cells affect the ability of NK cells to modulate DC functions. We show here that NK cells derived from healthy donors (N-NK), when cocultured with human liver epithelial cells, induced maturation as well as activation of DCs, such as increased migratory capacity as well as T cell stimulatory activity. In contrast, NK cells from chronic hepatitis C virus-infected donors (HCV-NK) were not capable of activating DCs under the same conditions. In comparison to N-NK, HCV-NK showed higher expression of CD94/NKG2A and produced IL-10 and TGFbeta when cultured with hepatic cells, most of which express HLA-E, a ligand for CD94/NKG2A. Blockade of NKG2A restored the ability of HCV-NK to activate DCs, which appeared to result from the reduced NK cell production of IL-10 and TGFbeta. The blockade also endowed HCV-NK with an ability to drive DCs to generate Th1-polarized CD4+ T cells. These findings show that NK cell modulation of DCs is regulated by third-party cells through NK receptor and its ligand interaction. Aberrant expression of NK receptors may have an impact on the magnitude and direction of DC activation of T cells under pathological conditions, such as chronic viral infection.  相似文献   
87.
A perennial ryegrass cDNA clone encoding a putative glycine-rich RNA binding protein (LpGRP1) was isolated from a cDNA library constructed from crown tissues of cold-treated plants. The deduced polypeptide sequence consists of 107 amino acids with a single N-terminal RNA recognition motif (RRM) and a single C-terminal glycine-rich domain. The sequence showed extensive homology to glycine-rich RNA binding proteins previously identified in other plant species. LpGRP1-specific genomic DNA sequence was isolated by an inverse PCR amplification. A single intron which shows conserved locations in plant genes was detected between the sequence motifs encoding RNP-1 and RNP-2 consensus protein domains. A significant increase in the mRNA level of LpGRP1 was detected in root, crown and leaf tissues during the treatment of plants at 4°C, through which freezing tolerance is attained. The increase in the mRNA level was prominent at least 2 h after the commencement of the cold treatment, and persisted for at least 1 week. Changes in mRNA level induced by cold treatment were more obvious than those due to treatments with abscisic acid (ABA) and drought. The LpGRP1 protein was found to localise in the nucleus in onion epidermal cells, suggesting that it may be involved in pre-mRNA processing. The LpGRP1 gene locus was mapped to linkage group 2. Possible roles for the LpGRP1 protein in adaptation to cold environments are discussed.  相似文献   
88.
Quercetin, rutin, the extract of white radish sprout rich in kaempferol glycosides, and their combination were intragastrically administered to Wistar rats to investigate the interactive metabolism of these flavonoids. The combined administration of these flavonoids changed the concentrations of the metabolites in plasma as compared with the concentrations after the administration of a single compound.  相似文献   
89.
Ma Q  Li Y  Du J  Liu H  Kanazawa K  Nemoto T  Nakanishi H  Zhao Y 《Peptides》2006,27(4):841-849
We have previously reported the copper binding properties of R3 peptide (residues 318-335: VTSKCGSLGNIHHKPGGG, according to the longest tau protein) derived from the third repeat microtubule-binding domain of water-soluble tau protein. In this work, we have investigated copper binding properties of R2 peptide (residues 287-304: VQSKCGSKDNIKHVPGGG) derived from the second repeat region of tau protein. Similar to R3 peptide, R2 peptide also plays an important role in the formation of neurofibrillary tangles (NFTs) which is one of the two main biological characteristics of Alzheimer's disease (AD). Based on the copper binding properties of R2 peptide, the possible influences of the binding on the formation of NFTs were investigated. Results from circular dichroism (CD) spectra, nuclear magnetic resonance (NMR) spectroscopy, and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) suggest that the binding is pH-dependent and stoichiometry-determined. In addition, these results also reveal that R2 peptide adopts a monomeric alpha-helical structure in aqueous solutions at physiological pH after the addition of 1 mol equiv. of Cu2+. Since alpha-helix structure is responsible for the formation of paired helical filaments (PHFs) which aggregate into NFTs, it is hypothesized that Cu2+ induces R2 peptide to self-assemble into a PHFs-like structure. Hence, it is postulated that Cu2+ plays an important role in the aggregation of R2 peptide and tau protein and that copper binding to R2 peptide may be another possible involvement in AD.  相似文献   
90.
Given that neurons are post-mitotic cells, their life span is generally long enough to reach that of humans. However, sometimes neurons die without recognizable causes, as a result of a process called neurodegeneration. Apart from when gene mutations can be correlated with disease, it is difficult to pinpoint molecules that are responsible for neuronal death. Therefore, neurons living in a 'sick state' for many years might reveal important information about neuronal death. Systematic and extensive single-neuron analysis of 'sick' neurons is expected to provide clues to the mechanisms of neurodegeneration. Moreover, the elimination of putative triggering and promoting factors involved in neurodegenerative disease might prevent disease progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号