首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   41篇
  756篇
  2023年   4篇
  2022年   8篇
  2021年   20篇
  2020年   11篇
  2019年   15篇
  2018年   15篇
  2017年   19篇
  2016年   27篇
  2015年   41篇
  2014年   37篇
  2013年   48篇
  2012年   56篇
  2011年   54篇
  2010年   35篇
  2009年   34篇
  2008年   31篇
  2007年   34篇
  2006年   36篇
  2005年   26篇
  2004年   30篇
  2003年   17篇
  2002年   20篇
  2001年   18篇
  2000年   12篇
  1999年   14篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   3篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
排序方式: 共有756条查询结果,搜索用时 15 毫秒
61.
Carvedilol is one of the most effective beta blockers for preventing ventricular tachyarrhythmias in heart failure, but the mechanisms underlying its favorable antiarrhythmic benefits remain unclear. Spontaneous Ca(2+) waves, also called store overload-induced Ca(2+) release (SOICR), evoke ventricular tachyarrhythmias in individuals with heart failure. Here we show that carvedilol is the only beta blocker tested that effectively suppresses SOICR by directly reducing the open duration of the cardiac ryanodine receptor (RyR2). This unique anti-SOICR activity of carvedilol, combined with its beta-blocking activity, probably contributes to its favorable antiarrhythmic effect. To enable optimal titration of carvedilol's actions as a beta blocker and as a suppressor of SOICR separately, we developed a new SOICR-inhibiting, minimally beta-blocking carvedilol analog, VK-II-86. VK-II-86 prevented stress-induced ventricular tachyarrhythmias in RyR2-mutant mice and did so more effectively when combined with either of the selective beta blockers metoprolol or bisoprolol. Combining SOICR inhibition with optimal beta blockade has the potential to provide antiarrhythmic therapy that can be tailored to individual patients.  相似文献   
62.
Highly managed turfgrass systems accumulate considerable soil organic C, which supports a diverse and robust soil microbial community. Degradation of this soil organic C is mediated by a suite of soil enzymes. The relationship between these enzyme activities and the quality of soil organic C is central to understanding the dynamics of soil organic matter. We examined the activities of several soil enzymes involved in microbial C acquisition, including β-glucosidase, N-acetyl-β-glucosaminidase, cellulase, chitinase, and phenol oxidase, and characterized the chemical composition of soil organic matter using Fourier transform infrared spectroscopy (FTIR) in a turfgrass chronosequence (1–95 years old) and adjacent native pines. Non-metric multidimensional scaling analysis showed that the chemical composition of soil organic matter varied with turf age and land use (turf versus pines). Using the polysaccharide peak (1,060 cm−1) as a reference, both aliphatic (2,930 cm−1) and carboxylic (1,650 and 1,380 cm−1) compounds increased with turf age, indicating that soil organic matter became more recalcitrant. Soil enzyme activities per unit soil mass increased with turf age and were correlated to soil C content. Most soil enzyme activities in native pines were similar to those in young turf, but the cellulase activity was similar to or greater than the activity in old turfgrass systems. On a soil C basis, however, the activities of N-acetyl-β-glucosaminidase and cellulase decreased with turf age; this reduction was correlated to the relative changes in the chemical composition of soil organic matter. We observed that the chemical composition of soil organic matter was significantly correlated with the enzyme activity profile when expressed per unit microbial biomass C, but not per unit soil organic C. Our results suggest that chemical composition of soil organic matter changes with turf age and this change partially determines the relative abundance of C-degrading soil enzymes, likely through the influence on microbial community composition.  相似文献   
63.
RhCl3 · xH2O catalyst-mediated hydrogenation reactions of vinyl phosphonic diethyl ester H2CCH-P(O)(OEt)2 (1) have been investigated. Results demonstrate that the hydrogenation of H2CCH-P(O)(OEt)2 (1) to CH3CH2-P(O)(OEt)(OH) (2) proceeds in the presence of RhCl3 · xH2O catalyst, without any external hydrogen source and ancillary ligands, to near qualitative yields in ethanol and water media. 31P, 13C and 1H NMR and deuterium-labeling experiments provide evidence for the non-concerted mechanistic pathway associated with the hydrogenation of 1 to 2.  相似文献   
64.
The malarial aminopeptidases have emerged as promising new drug targets for the development of novel antimalarial drugs. The M18AAP of Plasmodium falciparum malaria is a metallo-aminopeptidase that we show demonstrates a highly restricted specificity for peptides with an N-terminal Glu or Asp residue. Thus, the enzyme may function alongside other aminopeptidases in effecting the complete degradation or turnover of proteins, such as host hemoglobin, which provides a free amino acid pool for the growing parasite. Inhibition of PfM18AAP's function using antisense RNA is detrimental to the intra-erythrocytic malaria parasite and, hence, it has been proposed as a potential novel drug target. We report the X-ray crystal structure of the PfM18AAP aminopeptidase and reveal its complex dodecameric assembly arranged via dimer and trimer units that interact to form a large tetrahedron shape that completely encloses the 12 active sites within a central cavity. The four entry points to the catalytic lumen are each guarded by 12 large flexible loops that could control substrate entry into the catalytic sites. PfM18AAP thus resembles a proteasomal-like machine with multiple active sites able to degrade peptide substrates that enter the central lumen. The Plasmodium enzyme shows significant structural differences around the active site when compared to recently determined structures of its mammalian and human homologs, which provides a platform from which a rational approach to inhibitor design of new malaria-specific drugs can begin.  相似文献   
65.
Accumulating evidence reveals that sole mutations in hENT3 cause a spectrum of human genetic disorders. Among these include H syndrome, characterized by scleroderma, hyperpigmentation, hypertrichosis, hepatomegaly, cardiac abnormalities and musculoskeletal deformities, pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndrome, characterized by autoantibody-negative diabetes mellitus and skin deformities, familial Rosai-Dorfman disease, characterized by short stature, familial histiocytosis and sinus histiocytosis with massive lymphadenopathy (SHML), characterized by severe tissue infiltration of immune cells and swollen lymph nodes. hENT3 spectrum disorders share a common mutation and share overlapping clinical manifestations that display many intriguing resemblances to mitochondrial and lysosomal disorders. Although earlier studies identify hENT3 as a mitochondrial and a lysosomal nucleoside transporter, the precise connections between hENT3 and the pathophysiology of these disorders remain unresolved. In this study, we performed functional and biochemical characterization of these mutations in hENT3. We report severe reductions/losses of hENT3 nucleoside transport functions of hENT3 syndrome mutants. In addition to transport alterations, we provide evidence for possible loss of hENT3 functions in all H and pigmented hypertrichotic dermatosis with insulin-dependent diabetes syndromes due to either mistrafficking or altered stability of mutant hENT3 proteins.  相似文献   
66.
Hydroxyl radicals induce hinge cleavage in a human IgG1 molecule via initial radical formation at the first hinge Cys231 followed by electron transfer to the upper hinge residues. To enable engineering of a stable monoclonal antibody hinge, we investigated the role of the hinge His229 residue using structure modeling and site-directed mutagenesis. Direct involvement of His229 in the reaction mechanism is suggested by a 75–85% reduction of the hinge cleavage for variants in which His229 was substituted with either Gln, Ser, or Ala. In contrast, mutation of Lys227 to Gln, Ser, or Ala increased hinge cleavage. However, the H229S/K227S double mutant shows hinge cleavage levels similar to that of the single H229S variant, further revealing the importance of His229. Examination of the hinge structure shows that His229 is capable of forming hydrogen bonds with surrounding residues. These observations led us to hypothesize that the imidazole ring of His229 may function to facilitate the cleavage by forming a transient radical center that is capable of extracting a proton from neighboring residues. The work presented here suggests the feasibility of engineering a new generation of monoclonal antibodies capable of resisting hinge cleavage to improve product stability and efficacy.  相似文献   
67.
The marine cyanobacterium Phormidium valderianum BDU 140441 exhibited the ability to grow at 0.25?mM tannic acid, a known hindering chemical for microbial growth. The tannic acid-degrading ability of the organism is evident from the UV–visible absorption spectrum. In addition, the existence of tannase has been localized by activity staining, and its induction in activity upon tannic acid exposure was confirmed in native gel. The critical tannic acid metabolization enzymes tested for are polyphenol oxidase and esterases; both are well known for tannic acid degradation. Upon tannic acid exposure, increased activity of polyphenol oxidase and expression of few new isoforms of esterase were identified by activity staining.  相似文献   
68.
69.
Neuromedin U (NMU) is a brain-gut peptide, which peripherally stimulates smooth muscle, increases of blood pressure, alters ion transport in the gut, controls local blood flow, and regulates adrenocortical function. Although intracerebroventricular (i.c.v.) administration of NMU is known to decrease food intake and body weight, little is known about its effect on other physiological functions. We examined the effects of i.c.v. administration of NMU on mean arterial pressure (MAP), heart rate (HR), and plasma norepinephrine in conscious rats. Neuromedin U (0.05 and 0.5 nmol) provoked an increase in MAP (93.8 +/- 0.5 to 123.5 +/- 1.7 and 94.7 +/- 0.8 to 132.7 +/- 3.0 mm Hg, respectively) and HR (334.9 +/- 6.0 to 494.1 +/- 6.9 and 346.3 +/- 3.3 to 475.1 +/- 8.9 beats/min, respectively). In contrast, plasma norepinephrine increased only with a high dose of neuromedin U. Intravenously administered NMU (0.5 nmol) elicited a small and short lasting increase in MAP, compared to that by i.c.v. NMU. These results indicate that central neuromedin U regulates sympathetic nervous system activity and affects cardiovascular function.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号