首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   754篇
  免费   45篇
  799篇
  2023年   4篇
  2022年   11篇
  2021年   20篇
  2020年   13篇
  2019年   16篇
  2018年   16篇
  2017年   19篇
  2016年   28篇
  2015年   44篇
  2014年   43篇
  2013年   50篇
  2012年   55篇
  2011年   60篇
  2010年   35篇
  2009年   35篇
  2008年   32篇
  2007年   34篇
  2006年   39篇
  2005年   29篇
  2004年   31篇
  2003年   18篇
  2002年   24篇
  2001年   18篇
  2000年   11篇
  1999年   14篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   4篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
排序方式: 共有799条查询结果,搜索用时 15 毫秒
41.
Cyclic ADP-ribose (cADPR), synthesized by CD38, regulates intracellular calcium in uterine smooth muscle. CD38 is a transmembrane protein that has both ADP-ribosyl cyclase and cADPR hydrolase enzyme activities involved in cADPR metabolism. CD38 expression and its enzyme activities in uterine smooth muscle are regulated by estrogen. In the present study, we examined CD38 expression, its enzyme activities, and cADPR levels in myometrium obtained from rats at 14-17 days of gestation (preterm) and at parturition (term). CD38 expression, ADP-ribosyl cyclase activity, and cADPR levels were higher in uterine tissues obtained from term rats compared with that of preterm rats, while activity of cADPR hydrolase did not significantly change. In an effort to address whether changes in estrogen: progesterone ratio that occur during pregnancy account for the observed effects on CD38 expression and function, we determined the effect of different doses of progesterone in the presence of estrogen on CD38 expression and its enzyme activities in uterine smooth muscle obtained from ovariectomized rats. In myometrium obtained from ovariectomized rats, estrogen administration caused increased CD38 protein expression and ADP-ribosyl cyclase activity. The estrogen-induced increases in CD38 expression and ADP-ribosyl cyclase activity were inhibited by simultaneous administration of 10 or 20 mg of progesterone. These results indicate that the estrogen:progesterone ratio determines CD38 expression and ADP-ribosyl cyclase activity. These changes in CD38/cADPR pathway may contribute to increased uterine motility and onset of labor.  相似文献   
42.
The most abundant anhydrase isoenzyme from the erythrocyte of Indian buffalo has been purified using affinity gel and DEAE-cellulose ion-exchange columns and single crystals suitable for X-ray diffraction studies have been obtained. The unit cell dimensions are a = 46.8 A, b = 104.5 A, c = 60.4 A, beta = 91.2 degrees and the space group is P2(1), with two molecules per asymmetric unit.  相似文献   
43.
The Golgi apparatus is optimized separately in different tissues for efficient protein trafficking, but we know little of how cell signaling shapes this organelle. We now find that the Abl tyrosine kinase signaling pathway controls the architecture of the Golgi complex in Drosophila photoreceptor (PR) neurons. The Abl effector, Enabled (Ena), selectively labels the cis-Golgi in developing PRs. Overexpression or loss of function of Ena increases the number of cis- and trans-Golgi cisternae per cell, and Ena overexpression also redistributes Golgi to the most basal portion of the cell soma. Loss of Abl or its upstream regulator, the adaptor protein Disabled, lead to the same alterations of Golgi as does overexpression of Ena. The increase in Golgi number in Abl mutants arises in part from increased frequency of Golgi fission events and a decrease in fusions, as revealed by live imaging. Finally, we demonstrate that the effects of Abl signaling on Golgi are mediated via regulation of the actin cytoskeleton. Together, these data reveal a direct link between cell signaling and Golgi architecture. Moreover, they raise the possibility that some of the effects of Abl signaling may arise, in part, from alterations of protein trafficking and secretion.  相似文献   
44.
45.
Nonexchangeable proton resonances in the 500-MHz NMR spectrum of d-CTCGAGCTCGAG have been assigned by using two-dimensional correlated spectroscopy (COSY) and nuclear Overhauser enhancement spectroscopy (NOESY). 1H-1H coupling constants (J) in the deoxyribose rings have been measured by analyzing intensity and multiplet patterns in the phase-sensitive omega 1-scaled COSY spectra. A modification of the J-resolved technique, called amplitude-modulated J-resolved spectroscopy, has been described and used to increase the accuracy of J measurements. Absorption mode omega 1-scaled NOESY spectra at mixing times in the range 50-200 ms have been analyzed to monitor spin diffusion. A 50-ms spectrum has been used to estimate several interproton distances. The coupling constant and distance data have been used to arrive at sequence-specific sugar geometries and glycosidic torsion angles. The backbone structure has been refined by model building using the FRODO program, employing the sugar geometries and glycosidic torsion angles discussed above. The molecule shows interesting sequence-dependent variations in the structure. The cleavage site of the restriction enzyme XhoI exhibits unique differences in the sugar geometry and backbone torsion angles.  相似文献   
46.
Cytokines such as interleukin-6 (IL-6) and IL-17 which act as key regulators of the immune response have been identified to have a potential role in the bone remodeling mechanism. Receptor activator of NF-κB ligand (RANKL) has been shown to regulate osteoclast differentiation and function while the osteoprotegerin (OPG) blocks the binding of RANKL and inhibits the differentiation of osteoclasts, thus favoring osteogenesis. Alkaline phosphatase (ALP) on the other hand works as early mineralization indicator in bone regulation. The current study aims to determine the potential role of IL-6 and IL-17A in regulating the OPG/RANKL system of the murine osteoblast cell line (MC3T3-E1). Gene expression analysis showed significant up-regulation of OPG and ALP by all the treated groups (rIL-6, rIL-17A and rIL-6 + rIL-17A). In contrast, treatment of cells with rIL-6 and/or rIL-17A showed down-regulation of RANKL expression. Interestingly, the osteoblast cells treated with combinations of rIL-6 + rIL17A showed marked increased in OPG/RANKL ratio. Similar pattern of protein expression was observed in the osteoblasts treated with rIL-6 and/or rIL-17A as detected by western blotting and ELISA. These findings suggest a new mechanism of regulation by these cytokines on the expression of OPG and RANKL, which could promote osteogenesis and diminish osteoclastogenesis.  相似文献   
47.
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5?% along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52–76?% improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.  相似文献   
48.
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.  相似文献   
49.
50.

Background

Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular, patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours beyond the normally brief half-life of succinylcholine. We hypothesized that intravenous administration of plant-derived recombinant BChE, which also prevents mortality in nerve agent poisoning, would rapidly reverse the effects of succinylcholine.

Methods

Recombinant butyrylcholinesterase was produced in transgenic plants and purified. Further analysis involved murine and guinea pig models of succinylcholine toxicity. Animals were treated with lethal and sublethal doses of succinylcholine followed by administration of butyrylcholinesterase or vehicle. In both animal models vital signs and overall survival at specified intervals post succinylcholine administration were assessed.

Results

Purified plant-derived recombinant human butyrylcholinesterase can hydrolyze succinylcholine in vitro. Challenge of mice with an LD100 of succinylcholine followed by BChE administration resulted in complete prevention of respiratory inhibition and concomitant mortality. Furthermore, experiments in symptomatic guinea pigs demonstrated extremely rapid succinylcholine detoxification with complete amelioration of symptoms and no apparent complications.

Conclusions

Recombinant plant-derived butyrylcholinesterase was capable of counteracting and reversing apnea in two complementary models of lethal succinylcholine toxicity, completely preventing mortality. This study of a protein antidote validates the feasibility of protection and treatment of overdose from succinylcholine as well as other biologically active butyrylcholinesterase substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号