首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   690篇
  免费   56篇
  746篇
  2021年   10篇
  2020年   5篇
  2019年   8篇
  2018年   12篇
  2017年   12篇
  2016年   11篇
  2015年   20篇
  2014年   20篇
  2013年   44篇
  2012年   33篇
  2011年   33篇
  2010年   18篇
  2009年   24篇
  2008年   37篇
  2007年   37篇
  2006年   28篇
  2005年   41篇
  2004年   22篇
  2003年   27篇
  2002年   37篇
  2001年   22篇
  2000年   37篇
  1999年   23篇
  1998年   8篇
  1997年   10篇
  1996年   7篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1992年   16篇
  1991年   18篇
  1990年   7篇
  1989年   5篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   5篇
  1975年   4篇
  1972年   3篇
  1970年   2篇
  1967年   2篇
  1966年   2篇
  1935年   2篇
排序方式: 共有746条查询结果,搜索用时 0 毫秒
101.
Rat livers and microsomes were subjected to electron paramagnetic resonance (EPR) measurements at 77 K. The EPR spectra of the livers from the control group, carbon tetrachloride-, 3-methylcholanthrene-, and 3,3',4,4',5-pentachlorobiphenyl (PCB126)-treated rats exhibited an EPR spectrum at g=2.40, 2.24, and 1.93, which is characteristic of P450 in a resting state. The liver of the PCB126-treated rats showed an additional distinct EPR spectrum at g=2.49, 2.26, and 1.87 (g=2.49-species). The heme environmental structure of g=2.49-species was identified by crystal field analysis using three EPR g-values of the microsome treated with various chemicals. These results indicated that g=2.49-species is a hemeprotein with cysteine thiolate at the 5th coordination site, and a nitrogenous ligand at the 6th site.  相似文献   
102.
Phosphoinositide 3-kinase (PI3K) has important functions in various biological systems, including immune response. Although the role of PI3K in signaling by antigen-specific receptors of the adaptive immune system has been extensively studied, less is known about the function of PI3K in innate immunity. In the present study, we demonstrate that macrophages deficient for PI3K (p85alpha regulatory subunit) are impaired in nitric oxide (NO) production upon lipopolysaccharide and interferon-gamma stimulation and thus vulnerable for intracellular bacterial infection such as Chlamydophila pneumoniae. Although expression of inducible nitric-oxide synthase (iNOS) is induced normally in PI3K-deficient macrophages, dimer formation of iNOS protein is significantly impaired. The amount of intracellular tetrahydrobiopterin, a critical stabilizing cofactor for iNOS dimerization, is decreased in the absence of PI3K. In addition, induction of GTP cyclohydrolase 1, a rate-limiting enzyme for biosynthesis of tetrahydrobiopterin, is greatly reduced. Our current results demonstrate a critical role of class IA type PI3K in the bactericidal activity of macrophages by regulating their NO production through GTP cyclohydrolase 1 induction.  相似文献   
103.
The molecular mechanism involved in cell wall dynamics has not been well clarified, although it is quite important for organ growth. We characterized a rice mutant, root growth inhibiting (rt), which is defective in root elongation. The rt mutant showed a severe defect in cell elongation at the root-elongating zone with additional collapse of epidermal and cortex cells at the root tip caused by the defect in the smooth exfoliation of root cap cells. Consistent with these phenotypes, expression of the RT gene, which encodes a member of the membrane-anchored endo-1,4-??-d-glucanase, was specifically localized in the root-elongating zone and at the junction between epidermal and root cap cells. The enzymatic analysis of root extracts from the wild-type and rt mutant indicated that RT hydrolyzes noncrystalline amorphous cellulose. The cellulose content was slightly increased but the crystallinity of cellulose was decreased in the rt root. In addition, the hemicellulose composition was different between wild-type and rt roots. The total extensibility was significantly lower in the rt root explants. Based on these results, we concluded that RT is involved in the disassembly of the cell wall for cell elongation in roots as well as for root cap exfoliation from the epidermal cell layer by hydrolyzing the noncrystalline amorphous cellulose fibers of cellulose microfibrils resulting in loosening of the hemicellulose and cellulose interaction.  相似文献   
104.
105.
106.
Uracil-DNA glycosylase (UDG) is an important repair enzyme in all organisms to remove uracil bases from DNA. Recent biochemical studies have revealed that human nuclear UDG (UNG2) forms a multiprotein complex in replication foci and initiates the base excision repair pathway by interacting with proliferating cell nuclear antigen (PCNA). Here, we show the physical and functional interactions between UDG and PCNA from the hyperthermophilic euryarchaeon, Pyrococcus furiosus. The physical interaction between the two proteins was identified by a surface plasmon resonance analysis. Furthermore, the uracil glycosylase activity of P. furiosus UDG is stimulated by P. furiosus PCNA (PfuPCNA) in vitro. This stimulatory effect was observed only when wild type PfuPCNA, but not a monomeric PCNA mutant, was present in the reaction. Mutational analyses revealed that our predicted PCNA-binding region (AKTLF) in P. furiosus UDG is actually important for the interaction with PfuPCNA. This is the first report describing the functional interaction between archaeal UDG and PCNA.  相似文献   
107.
108.
109.
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.  相似文献   
110.
Many cases of accelerated evolution driven by positive Darwinian selection are identified in the genes of venomous and reproductive proteins. This evolutional phenomenon might have important consequences in their gene-products' functions, such as multiple specific toxins for quick immobilization of the prey and the establishment of barriers to fertilization that might lead to speciation, and in the molecular evolution of novel genes. Recently, we analyzed the molecular evolution of two galectins isolated from the skin mucus of conger eel (Conger myriaster), named congerins I and II, by cDNA cloning and X-ray structural analysis, and we found that they have evolved in the rapid adaptive manner to emergence of a new structure including strand-swapping and a unique new ligand-binding site. In this review article we summarize and discuss the molecular evolution, especially the rapid adaptive evolution, and the structure-function relationships of conger eel galectins. Published in 2004.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号