首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   4篇
  国内免费   14篇
  2024年   4篇
  2023年   5篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   2篇
  2015年   10篇
  2014年   3篇
  2013年   8篇
  2012年   8篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
11.
Morphology and miscibility control are still a great challenge in polymer solar cells. Despite physical tools being applied, chemical strategies are still limited and complex. To finely tune blend miscibility to obtain optimized morphology, chemical steric engineering is proposed to systemically investigate its effects on optical and electronic properties, especially on a balance between crystallinity and miscibility. By changing the alkylthiol side chain orientation different steric effects are realized in three different polymers. Surprisingly, the photovoltaic device of the polymer PTBB‐m with middle steric structure affords a better power conversion efficiency, over 12%, compared to those of the polymers PTBB‐o and PTBB‐p with large or small steric structures, which could be attributed to a more balanced blend miscibility without sacrificing charge‐carrier transport. Space charge‐limited current, atomic force microscopy, grazing incidence wide angle X‐ray scattering, and resonant soft X‐ray scattering measurements show that the steric engineering of alkylthiol side chains can have significant impacts on polymer aggregation properties, blend miscibility, and photovoltaic performances. More important, the control of miscibility via the simple chemical approach has preliminarily proved its great potential and will pave a new avenue for optimizing the blend morphology.  相似文献   
12.
Nod1 is an intracellular protein that is involved in recognition of bacterial molecules and whose genetic variation has been linked to several inflammatory diseases. Previous studies suggested that the recognition core of Nod1 stimulatory molecules is gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), but the identity of the major Nod1 stimulatory molecule produced by bacteria remains unknown. Here we show that bacteria produce lipophilic molecules capable of stimulating Nod1. Analysis of synthetic compounds revealed stereoselectivity of the DAP residue and that conjugation of lipophilic acyl residues specifically enhances the Nod1 stimulatory activity of the core iE-DAP. Furthermore, we demonstrate that lipophilic molecules induce and/or enhance the secretion of innate immune mediators from primary mouse mesothelial cells and human monocytic MonoMac6 cells, and this effect is mediated through Nod1. These results provide insight into the mechanism of immune recognition via Nod1, which might be useful in the design and testing of novel immunoregulators.  相似文献   
13.
【目的】以多效生防菌株——密旋链霉菌(Streptomyces pactum) Act12为研究材料,探究转录因子BldM对生防链霉菌Act12形态发育及抗生素合成的调控作用。【方法】通过基因工程手段构建bldM基因缺失突变株△bldM及过表达突变株OE-bldM,利用扫描电镜观察、抑菌实验、高效液相色谱检测和实时荧光定量PCR探究缺失突变株△bldM及过表达突变株OE-bldM与野生型(wild) Act12在形态发育、生长速率、寡霉素产量及抗病原菌能力等方面的差异。【结果】经测序验证bldM基因缺失突变体△bldM及过表达突变体OE-bldM均构建成功,其中△bldM寡霉素D产量明显降低且无法形成气生菌丝,而过表达突变株OE-bldM的气生菌丝更加密集,产孢更为丰富。与野生型菌株相比,OE-bldM的寡霉素D产量增加了23%,编码寡霉素核心合成酶基因的转录水平上调了2-3倍,抑菌活性显著增强。【结论】全局性转录调控因子BldM不但能影响Act12气生菌丝及孢子形成,并且参与正调控Act12寡霉素的合成,本研究结果为转录因子BldM的调控功能进行了新的挖掘和补充,并为后续深入研究密旋...  相似文献   
14.
15.
16.
The axonemal core of motile cilia and flagella consists of nine doublet microtubules surrounding two central single microtubules. Attached to the doublets are thousands of dynein motors that produce sliding between neighboring doublets, which in turn causes flagellar bending. Although many structural features of the axoneme have been described, structures that are unique to specific doublets remain largely uncharacterized. These doublet-specific structures introduce asymmetry into the axoneme and are likely important for the spatial control of local microtubule sliding. Here, we used cryo-electron tomography and doublet-specific averaging to determine the 3D structures of individual doublets in the flagella of two evolutionarily distant organisms, the protist Chlamydomonas and the sea urchin Strongylocentrotus. We demonstrate that, in both organisms, one of the nine doublets exhibits unique structural features. Some of these features are highly conserved, such as the inter-doublet link i-SUB5-6, which connects this doublet to its neighbor with a periodicity of 96 nm. We also show that the previously described inter-doublet links attached to this doublet, the o-SUB5-6 in Strongylocentrotus and the proximal 1–2 bridge in Chlamydomonas, are likely not homologous features. The presence of inter-doublet links and reduction of dynein arms indicate that inter-doublet sliding of this unique doublet against its neighbor is limited, providing a rigid plane perpendicular to the flagellar bending plane. These doublet-specific features and the non-sliding nature of these connected doublets suggest a structural basis for the asymmetric distribution of dynein activity and inter-doublet sliding, resulting in quasi-planar waveforms typical of 9+2 cilia and flagella.  相似文献   
17.
18.
Classical swine fever (CSF) is a contagious disease with a high mortality rate and is caused by classical swine fever virus (CSFV). CSFV non-structural protein 4B (NS4B) plays a crucial role in CSFV replication and pathogenicity. However, precisely how NS4B exerts these functions remains unknown, especially as there are no reports relating to potential cellular partners of CSFV NS4B. Here, a yeast two-hybrid (Y2H) system was used to screen the cellular proteins interacting with NS4B from a porcine alveolar macrophage (PAM) cDNA library. The protein screen along with alignment using the NCBI database revealed 14 cellular proteins that interact with NS4B: DDX39B, COX7C, FTH1, MAVS, NR2F6, RPLP1, PSMC4, FGL2, MKRN1, RPL15, RPS3, RAB22A, TP53BP2 and TBK1. These proteins mostly relate to oxidoreductase activity, signal transduction, localization, biological regulation, catalytic activity, transport and metabolism by GO categories. Tank-binding kinase 1 (TBK1) was chosen for further confirmation. The NS4B-TBK1 interaction was further confirmed by subcellular co-location, co-immunoprecipitation and glutathione S-transferase pull-down assays. This study offers a theoretical foundation for further understanding of the diversity of NS4B functions in relation to viral infection and subsequent pathogenesis.  相似文献   
19.
Cadmium (Cd) pollution poses a serious threat to various ecosystems, and phytoremediation is an alternate method for developing the soil health. To better utilize phytoremediation for Cd-contaminated soil remediation, the ginkgo leaves, pine needles, and Eucommia bark were mixed and naturally fermented to obtain Ginkgo bilobaPinus massonianaEucommia ulmoides (GPE) Jiaosu and Jiaosu residue, whose effects on Broussonetia papyrifera planted in Cd-contaminated soil were evaluated. The results showed that the contents of the protein, phenolic, vitamin E, and alcohol of GPE Jiaosu were 4400 ± 0.46, 0.22 ± 0.01, 0.88 ± 0.24, and 4.63 ± 0.25 μL/mL, accordingly, with fine antioxidant activity. The soil pH, electrical conductivity content, organic carbon, total nitrogen, total phosphorus, alkali-hydrolyzable nitrogen, available phosphorus, and Cd concentration were all significantly (p < 0.05) modified. The chlorophyll content of B. papyrifera was increased by using Jiaosu residue in 12 hours, while the promotion effect of Jiaosu appeared in the later stage (60 days). The Cd tolerance physiological indexes such as malondialdehyde content and antioxidant enzymes' activity were all regulated. Applying the Jiaosu residue, the Cd in stems was decreased by 72.61% under 1000 mg/kg Cd treatment. These results suggested that GPE Jiaosu and Jiaosu residue can improve the properties of Cd-contaminated soil, promote the Cd tolerance of B. papyrifera, and affect the Cd migration. The current study provides a new bioremediation method using the Jiaosu and Jiaosu residue as Cd environmental remediation materials in a recyclable pathway, which is a circular and healthy development concept that integrates economic, ecological, and social significance.  相似文献   
20.
覃英莲  柏杨  付康康  付世建 《生态学报》2017,37(15):5179-5188
为了考查长期高温驯化的中华倒刺鲃(Spinibarbus sinensis)幼鱼快速降温后不同生理功能对低温环境的响应速率,将实验鱼分为2组分别在15℃和25℃条件下长期驯养(8周),随后25℃组快速降温至15℃(降温组),同时15℃组(恒低温对照组)温度保持不变;在降温后的第1、2、4和8周分别测定和比较降温组和恒温对照组实验鱼的温度耐受能力、游泳能力、自发活动水平、摄食代谢和生长性能等相关生理指标。结果显示:降温后,低温耐受能力(CT_(min))1周时就达到稳定与对照组不再有差异,而高温耐受能力(CT_(max))2周时才达到稳定;与对照组相比,降温处理导致实验鱼自发活动水平(运动时间百分比,PTM和运动总距离,TDM)显著上升,且此差异持续整个驯化周期(P0.05);降温组的临界游泳速度(Critical swimming speed U_(crit))在降温的1—2周均显著小于对照组(P0.05),直到4周才达到稳定;降温组实验鱼特殊动力作用(Specific dynamic action SDA)持续时间和摄食后代谢峰值(Peak metabolic rate PMR)与对照组在降温1—4周均没有显著差异;尽管降温组有更高的摄食率,其食物转化效率和增重率均显著低于对照组(P0.05)。研究表明:中华倒刺鲃在水体温度下降后,不同生理功能的稳定速率存在差异,这可能与不同生理功能的生态关联及内在机制的不同有关;降温处理导致机体生长受阻,其主要原因可能是由于应对环境温度变动的逆境胁迫、生理功能调整以及自发活动增加所导致的能量消耗上升所致。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号