首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19146篇
  免费   1410篇
  国内免费   1520篇
  22076篇
  2024年   48篇
  2023年   329篇
  2022年   658篇
  2021年   1088篇
  2020年   670篇
  2019年   905篇
  2018年   802篇
  2017年   558篇
  2016年   876篇
  2015年   1153篇
  2014年   1456篇
  2013年   1521篇
  2012年   1810篇
  2011年   1567篇
  2010年   989篇
  2009年   847篇
  2008年   943篇
  2007年   811篇
  2006年   659篇
  2005年   578篇
  2004年   484篇
  2003年   436篇
  2002年   387篇
  2001年   285篇
  2000年   292篇
  1999年   303篇
  1998年   195篇
  1997年   199篇
  1996年   188篇
  1995年   151篇
  1994年   136篇
  1993年   96篇
  1992年   140篇
  1991年   114篇
  1990年   100篇
  1989年   77篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   23篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide‐based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.  相似文献   
132.
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil‐expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.  相似文献   
133.
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.  相似文献   
134.
Selenium (Se) is an essential micronutrient in living organisms, having a narrow margin between essential and potentially toxic intake/exposure. Thus, the biochemistry of Se in living organisms must be studied in-depth to determine the underlying mechanism of Se cytotoxicity. In this study, we report the emergence of selenium nanovirus (SeNVs) in selenite-exposed fish (freshwater and saltwater) and plants (dryland) and its toxicity in them. SeNVs were found in both the abdomen and tail of Oryzias melastigma and saltwater Rhodeus ocellatus, which led to their death. The occurrence of the intracellular assembly of SeNVs was observed in the roots and leaves of corn Zea mays, but not in those of Limnobium laevigatum. SeNVs led to the death of Z. mays but caused chronic toxicity in L. laevigatum. SeNVs should be a system or structure that dissipates the intracellular redox gradients of the host cells, with simple information consisting Se–O, Se–N, or Se–S bond, that would ensure elemental Se ligand binding with nearly specific biomolecules in host cells, thereby maintaining their composition and stabilizing their structure. The multiple toxic effects of Se, therefore, could be the consequence of increase of entropy in the host cells caused by the intracellular assembly of SeNVs. This study may provide an insight into the underlying mechanism of Se in environmental toxicology and its applications in human health.  相似文献   
135.
Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.  相似文献   
136.
BackgroundAdvances in antimalarial drug development are important for combating malaria. Among the currently identified antimalarial drugs, it is suggested that some interact directly with the malarial parasites while others interact indirectly with the parasites. While this approach leads to parasite elimination, little is known about how these antimalarial drugs impact immune cells that are also critical in malarial response.MethodsHerein, the effects of two common antimalarial drugs, chloroquine and quinine, on platelets were explored at both the bulk level, using high performance liquid chromatography, and the single cell level, using carbon-fiber microelectrode amperometry, to characterize any changes in chemical messenger secretion.ResultsThe data reveal that both drugs cause platelet activation and reduce the number of platelet exocytosis events as well as delay fusion pore opening and closing.ConclusionsThis work demonstrates how chloroquine and quinine quantitatively and qualitatively impact in vitro platelet function.General significanceOverall, the goal of this work is to promote understanding about how antimalarial drugs impact platelets as this may affect antimalarial drug development as well as therapeutic approaches to treat malarial infection.  相似文献   
137.
138.
Tian  Xin-Yue  He  Dong-Dong  Bai  Shuang  Zeng  Wen-Zhi  Wang  Zheng  Wang  Mo  Wu  Liang-Quan  Chen  Zhi-Chang 《Plant and Soil》2021,460(1-2):1-30
Plant and Soil - Phytoremediation of soil contaminated by trace elements is a technology using plants and microorganisms to sequester, inactivate, or extract contaminants from the soil. The...  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号