首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   13篇
  2019年   1篇
  2018年   4篇
  2016年   4篇
  2015年   4篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   4篇
  2009年   4篇
  2008年   10篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   8篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1990年   2篇
排序方式: 共有114条查询结果,搜索用时 281 毫秒
71.
Periodically patterned zinc oxide nanorod (P‐ZnO NR) layers are directly prepared from a pre‐patterned ZnO seed layer using a polydimethylsiloxane (PDMS) elastomeric stamp and then applied in inverted organic photovoltaic devices (IOPVs). The IOPV is assembled with a hydrothermally grown zinc oxide nanorod patterns with a (100) preferential crystal orientation as an electron transport buffer layer (ETBL) and photoactive bilayer consisting of methacylate end‐functionalized poly(3‐hexylthiophene) (P3HT‐MA), phenyl‐C60‐butyric acid methyl ester (PC60BM) and indene‐C60 bis‐adduct (IC60BA). In te IOPVs, the P‐ZnO NR is found to induce efficient light harvesting and the photocrosslinkable P3HTs afford solution‐processed bilayer architecture in IOPVs to show improved device stability and performance (PCEmax= 5.95%), as the bilayered structure allowed direct exciton splitting, thus reducing the charge recombination.  相似文献   
72.
The proarrhythmic effects of new drugs have been assessed by measuring rapidly activating delayed-rectifier K+ current (IKr) antagonist potency. However, recent data suggest that even drugs thought to be highly specific IKr blockers can be arrhythmogenic via a separate, time-dependent pathway such as late Na+ current augmentation. Here, we report a mechanism for a quinolone antibiotic, sparfloxacin-induced action potential duration (APD) prolongation that involves increase in late L-type Ca2+ current (ICaL) caused by a decrease in Ca2+-dependent inactivation (CDI). Acute exposure to sparfloxacin, an IKr blocker with prolongation of QT interval and torsades de pointes (TdP) produced a significant APD prolongation in rat ventricular myocytes, which lack IKr due to E4031 pretreatment. Sparfloxacin reduced peak ICaL but increased late ICaL by slowing its inactivation. In contrast, ketoconazole, an IKr blocker without prolongation of QT interval and TdP produced reduction of both peak and late ICaL, suggesting the role of increased late ICaL in arrhythmogenic effect. Further analysis showed that sparfloxacin reduced CDI. Consistently, replacement of extracellular Ca2+ with Ba2+ abolished the sparfloxacin effects on ICaL. In addition, sparfloxacin modulated ICaL in a use-dependent manner. Cardiomyocytes from adult mouse, which is lack of native IKr, demonstrated similar increase in late ICaL and afterdepolarizations. The present findings show that sparfloxacin can prolong APD by augmenting late ICaL. Thus, drugs that cause delayed ICaL inactivation and IKr blockage may have more adverse effects than those that selectively block IKr. This mechanism may explain the reason for discrepancies between clinically reported proarrhythmic effects and IKr antagonist potencies.  相似文献   
73.
Iso-female lines (isolines) of Anopheles aconitus collected from Mae Hong Son, Phet Buri, and Chiang Mai Provinces were successfully identified to karyotypic forms. The results of identification revealed that An. aconitus Form B (X1, X2, Y2) was obtained from four and 48 isolines in Phet Buri and Chiang Mai Provinces, respectively, and Form C (X1, X2, Y3) was recovered from three and 41 isolines in Mae Hong Son and Chiang Mai Provinces, respectively. When comparing band to band on the same arm of ovarian nurse cell polytene chromosomes of An. aconitus Form B (Phet Buri: four isolines) and C (Mae Hong Son: three isolines, Chiang Mai: 20 isolines) to the standard chromosome mapping of An. aconitus Form B (Chiang Mai: 20 isolines), no major chromosomal rearrangements that related to the karyotype variations were demonstrated. The investigations on allelic frequencies of 4th stage larvae and adult females of three (Form C: Mae Hong Son), four (Form B: Phet Buri), 41 (Form C: Chiang Mai) and 48 (Form B: Chiang Mai) isolines suggested that An. aconitus Form B and C of all strains have similar allelic frequencies. This was observed at 10 isoenzymes 16 loci in 4th stage larvae, and 11 isoenzymes 13 loci in adult females. Hybridization tests among the four laboratory-raised isolines of An. aconitus Form B (Chiang Mai and Phet Buri) and C (Chiang Mai and Mae Hong Son) were employed by induced copulation. The results of crosses indicated that they were genetically compatible, providing viable progeny and completely synaptic salivary gland polytene chromosomes. The complete sequences ofrDNA internal-transcribed spacer two (ITS2) and partial sequences of mitochondrial cytochrome c oxidase subunit I and II (COI and COII) from genomic DNA of 12 isolines of An. aconitus Form B and C were identified. Total sequence lengths (ITS2+COI+COII) of An. aconitus isolines varied from 1550bp to 1556bp. Conspecific relationships between the two An. aconitus forms were well supported by low values of intraspecific distances (ranged from 0.1% to 1.0%) and genetic differentiation (d(xy): 0.01322) between the two forms. Based on evidence of no pre- and post-mating isolations, and nearly identical of DNA sequences of ITS2, COI and COII regions between An. aconitus Form B and C, we conclude that they are conspecific cytological races in the Thai population.  相似文献   
74.
Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]  相似文献   
75.
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.  相似文献   
76.
77.
A pink-pigmented bacterium, designated SW08-7T was isolated from the drinking water of a water purifier. Cells were Gram-negative, rod-shaped, strictly aerobic, and non-spore-forming. It grew optimally at 25°C, pH 6∼7. Phylogenese analysis based on 16S rRNA gene sequence showed that strain SW08-7T belongs to the genus Methylobacterium. The highest 16S rRNA gene sequence similarities were found to Methylobacterium mesophilicum JCM 2829T (96.9%), Methylobacterium brachiatum B0021T (96.9%), Methylobacterium phyllosphaerae CBMB27T (96.6%), Methylobacterium radiotolerans JCM 2831T (96.6%), and Methylobacterium hispanicum GP34T (96.5%). DNA-DNA hybridization experiment revealed low-level (28.5%) of DNA-DNA relatedness between strain SW08-7T and Methylobacterium hispanicum. The genomic DNA G+C content was 68.9 mol% and the major isoprenoid quinone was Q-10. The major cellular fatty acid of strain SW08-7T was C18:1 ω7c (79.8±2.1%). Results of phylogenetic, phenotypic, and biochemical analyses revealed that strain SW08-7T could be classified as representing a novel species of genus Methylobacterium, for which the name Methylobacterium dankookense sp. nov. is proposed. The type strain is SW08-7T (=KCTC 22512T =DSM 224151).  相似文献   
78.
Analysis of mucin genes has identified the presence of several features that may represent important functional domains in mucin glycoproteins. In the central region of each mucin, there are a variable number of tandem repeats (VNTR; minisatellites). However, their genomic levels are unclear because of complex genomic properties. We report here the distribution of VNTR and polymorphic analysis ofMUC8. We searched for VNTR ofMUC8 using the Tandem Repeat Finder program and found nine VNTR motif. Six (MUC8 MS1~MS6) among the nine VNTRs were evaluated in this study. Each VNTR inMUC8 region was analyzed in genomic DNA obtained from 200 unrelated individuals and multi-generational families. All VNTRs (MUC8 MS1, -MS2, -MS3, -MS4,-MS5 and -MS6) were genotyped as polymorphic. The degree of polymorphism within theMUC8-MS5 showed the highest heterozygosity (h = 0.786) in theMUC8 region. In order to perform a segregation analysis of the VNTRs inMUC8, we analyzed genomic DNA obtained from two generations of five families and from three generations of two families. Six of the polymorphic VNTRs were transmitted through meiosis following a Mendelian inheritance, which suggests that polymorphic VNTRs could be useful markers for paternity mapping and DNA fingerprinting.  相似文献   
79.
Proteolytic processing of amyloid precursor protein (APP) by β- and γ-secretases generates β-amyloid (Aβ) peptides, which accumulate in the brains of individuals affected by Alzheimer disease. Detergent-resistant membrane microdomains (DRM) rich in cholesterol and sphingolipid, termed lipid rafts, have been implicated in Aβ production. Previously, we and others reported that the four integral subunits of the γ-secretase associate with DRM. In this study we investigated the mechanisms underlying DRM association of γ-secretase subunits. We report that in cultured cells and in brain the γ-secretase subunits nicastrin and APH-1 undergo S-palmitoylation, the post-translational covalent attachment of the long chain fatty acid palmitate common in lipid raft-associated proteins. By mutagenesis we show that nicastrin is S-palmitoylated at Cys689, and APH-1 is S-palmitoylated at Cys182 and Cys245. S-Palmitoylation-defective nicastrin and APH-1 form stable γ-secretase complexes when expressed in knock-out fibroblasts lacking wild type subunits, suggesting that S-palmitoylation is not essential for γ-secretase assembly. Nevertheless, fractionation studies show that S-palmitoylation contributes to DRM association of nicastrin and APH-1. Moreover, pulse-chase analyses reveal that S-palmitoylation is important for nascent polypeptide stability of both proteins. Co-expression of S-palmitoylation-deficient nicastrin and APH-1 in cultured cells neither affects Aβ40, Aβ42, and AICD production, nor intramembrane processing of Notch and N-cadherin. Our findings suggest that S-palmitoylation plays a role in stability and raft localization of nicastrin and APH-1, but does not directly modulate γ-secretase processing of APP and other substrates.Alzheimer disease is the most common among neurodegenerative diseases that cause dementia. This debilitating disorder is pathologically characterized by the cerebral deposition of 39–42 amino acid peptides termed Aβ, which are generated by proteolytic processing of amyloid precursor protein (APP)2 by β- and γ-secretases (1, 2). The β-site APP cleavage enzyme 1 cleaves full-length APP within its luminal domain to generate a secreted ectodomain leaving behind a C-terminal fragment (β-CTF). γ-Secretase cleaves β-CTF within the transmembrane domain to release Aβ and APP intracellular C-terminal domain (AICD). γ-Secretase is a multiprotein complex, comprising at least four subunits: presenilins (PS1 and PS2), nicastrin, APH-1, and PEN-2 for its activity (3). PS1 is synthesized as a 42–43-kDa polypeptide and undergoes highly regulated endoproteolytic processing within the large cytoplasmic loop domain connecting putative transmembrane segments 6 and 7 to generate stable N-terminal (NTF) and C-terminal fragments (CTF) by an uncharacterized proteolytic activity (4). This endoproteolytic event has been identified as the activation step in the process of PS1 maturation as it assembles with other γ-secretase subunits (3). Nicastrin is a heavily glycosylated type I membrane protein with a large ectodomain that has been proposed to function in substrate recognition and binding (5), but this putative function has not been confirmed by others (6). APH-1 is a seven-transmembrane protein encoded by two human or three rodent genes that are alternatively spliced (7). Although PS1 (or PS2), nicastrin, APH-1, and PEN-2 are sufficient for γ-secretase processing of APP, a type I membrane protein, termed p23 (also referred toTMP21), was recently identified as a γ-secretase component that modulates γ-secretase activity and regulates secretory trafficking of APP (8, 9).A growing number of type I integral membrane proteins has been identified as γ-secretase substrates within the last few years, including Notch1 homologues, Notch ligands, Delta and Jagged, cell adhesion receptors N- and E-cadherins, low density lipoprotein receptor-related protein, ErbB-4, netrin receptor DCC, and others (10). Mounting evidence suggests that APP processing occurs within cholesterol- and sphingolipid-enriched lipid rafts, which are biochemically defined as detergentresistant membrane microdomains (DRM) (11, 12). Previously we reported that each of the γ-secretase subunits localizes in lipid rafts in post-Golgi and endosome membranes enriched in syntaxin 6 (13). Moreover, loss of γ-secretase activity by gene deletion or exposure to γ-secretase inhibitors results in the accumulation of APP CTFs in lipid rafts indicating that cleavage of APP CTFs likely occurs in raft microdomains (14). In contrast, CTFs derived from Notch1, Jagged2, N-cadherin, and DCC are processed by γ-secretase in non-raft membranes (14). The mechanisms underlying association of γ-secretase subunits with lipid rafts need further clarification to elucidate spatial segregation of amyloidogenic processing of APP in membrane microdomains.Post-translational S-palmitoylation is increasingly recognized as a potential mechanism for regulating raft association, stability, intracellular trafficking, and function of several cytosolic and transmembrane proteins (1517). S-palmitoylation refers to the addition of 16-carbon palmitoyl moiety to certain cysteine residues through thioester linkage. Cysteines close to transmembrane domains or membrane-associated domains in non-integral membrane proteins are preferred S-palmitoylation sites, although no conserved motif has been identified (18). Palmitoylation modifies numerous neuronal proteins, including postsynaptic density protein PSD-95 (19), a-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid receptors (20), nicotinic α7 receptors (21), neuronal t-SNAREs SNAP-25, synaptobrevin 2 and synaptogagmin (22, 23), neuronal growth-associated protein GAP-43 (24), protein kinase CLICK-III (CL3)/CaMKIγ (25), β-secretase (26), and Huntingtin (27). Although palmitoylation can occur in vitro without the involvement of an enzyme, a family of palmitoyltransferases that specifically catalyze S-palmitoylation has been identified (28, 29).In this study, we have identified S-palmitoylation of γ-secretase subunits nicastrin and APH-1, and characterized its role on DRM association, protein stability, and γ-secretase enzyme activities. We show that nicastrin is S-palmitoylated at Cys689, and APH-1 at Cys182 and Cys245. Mutagenesis of palmitoylation sites results in increased degradation of nascent nicastrin and APH-1 polypeptides and reduced association with DRM. Nevertheless, in cultured cells overexpression of S-palmitoylation-deficient nicastrin and APH-1 does not modulate γ-secretase processing of APP or other substrates.  相似文献   
80.
The role of stretch-activated channels (SACs) on the stretch-induced changes of rat atrial myocytes was studied using a computer model that incorporated various ion channels and transporters including SACs. A relationship between the extent of the stretch and the activation of SACs was formulated in the model based on experimental findings to reproduce changes in electrical activity and Ca2+ transients by stretch. Action potentials (APs) were significantly changed by the activation of SACs in the model simulation. The duration of the APs decreased at the initial fast phase and increased at the late slow phase of repolarisation. The resting membrane potential was depolarised from −82 to −70 mV. The Ca2+ transients were also affected. A prolonged activation of SACs in the model gradually increased the amplitude of the Ca2+ transients. The removal of Ca2+ permeability through SACs, however, had little effect on the stretch-induced changes in electrical activity and Ca2+ transients in the control condition. In contrast, the removal of the Na+ permeability nearly abolished these stretch-induced changes. Plotting the peaks of the Ca2+ transients during the activation of the SACs along a time axis revealed that they follow the time course of the Nai+ concentration. The Ca2+ transients were not changed when the Nai+ concentration was fixed to a control value (5.4 mM). These results predicted by the model suggest that the influx of Na+ rather than Ca2+ through SACs is more crucial to the generation of stretch-induced changes in the electrical activity and associated Ca2+ transients of rat atrial myocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号