全文获取类型
收费全文 | 12190篇 |
免费 | 901篇 |
国内免费 | 365篇 |
专业分类
13456篇 |
出版年
2024年 | 26篇 |
2023年 | 102篇 |
2022年 | 289篇 |
2021年 | 387篇 |
2020年 | 289篇 |
2019年 | 351篇 |
2018年 | 403篇 |
2017年 | 317篇 |
2016年 | 423篇 |
2015年 | 679篇 |
2014年 | 790篇 |
2013年 | 860篇 |
2012年 | 1079篇 |
2011年 | 1019篇 |
2010年 | 642篇 |
2009年 | 541篇 |
2008年 | 728篇 |
2007年 | 648篇 |
2006年 | 534篇 |
2005年 | 489篇 |
2004年 | 508篇 |
2003年 | 395篇 |
2002年 | 315篇 |
2001年 | 255篇 |
2000年 | 211篇 |
1999年 | 207篇 |
1998年 | 95篇 |
1997年 | 64篇 |
1996年 | 55篇 |
1995年 | 62篇 |
1994年 | 59篇 |
1993年 | 44篇 |
1992年 | 81篇 |
1991年 | 75篇 |
1990年 | 55篇 |
1989年 | 48篇 |
1988年 | 35篇 |
1987年 | 24篇 |
1986年 | 27篇 |
1985年 | 25篇 |
1984年 | 12篇 |
1983年 | 17篇 |
1982年 | 13篇 |
1980年 | 20篇 |
1979年 | 19篇 |
1978年 | 12篇 |
1977年 | 18篇 |
1975年 | 14篇 |
1974年 | 16篇 |
1970年 | 12篇 |
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
991.
Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression 下载免费PDF全文
Kang J Ferguson D Song H Bassing C Eckersdorff M Alt FW Xu Y 《Molecular and cellular biology》2005,25(2):661-670
Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression. 相似文献
992.
【背景】铜绿假单胞菌是临床上常见的条件致病菌,其异质性耐药的发生常导致临床治疗失败。【目的】研究铜绿假单胞菌对青霉素类抗生素的异质性耐药情况,为相关临床感染治疗提供一定的依据。【方法】收集临床分离的50株铜绿假单胞菌,采用纸片扩散法(diskdiffusion method)即Kirby-Bauer (K-B)法、菌落谱型分析(population analysis profile,PAP)法、生长实验以及传代稳定性实验探究铜绿假单胞菌的异质性耐药特征。【结果】K-B法初筛得到铜绿假单胞菌对哌拉西林(piperacillin,PIP)、哌拉西林/他唑巴坦(piperacillin/tazobactam,TZP)和替卡西林/克拉维酸(ticarcillin/clavulanic acid,TIM)的异质性耐药率分别为52%、52%和54%。PAP实验确认后有13株异质性耐药菌,其检出率占总实验菌株的26%。随机选取8株异质性耐药菌株,其耐药亚群的发生频率为7.3×10-7-1.2×10-5。通过无抗生素压力的生长实验发现,异质性耐药菌株PAS92、PAS57与其各自的3株最高PIP浓度平... 相似文献
993.
Electrochemical investigation on interaction between DNA with quercetin and Eu-Qu3 complex 总被引:6,自引:0,他引:6
The interactions of quercetin (Qu) and Eu-Qu3 complex with calf thymus DNA were studied using cyclic voltammetry (CV) and double potential step chronocoulometry (DPSCC) at glass carbon electrode (GCE) for the surface method. The method is simple, convenient, reliable, reagent saving. Information such as intrinsic binding constant (K), and binding numbers (n) of bound species per DNA (bp), ratio (K(Ox)/K(Red)) of the binding constants for the oxidized and reduced forms of a bound species and interaction mode was obtained using dsDNA-modified GCE. Quercetin and Eu-Qu3 can both bind to DNA, but quercetin binds to DNA mainly by electrostatic attraction and the complex bind to DNA by both intercalation and electrostatic attraction. For the quercetin/dsDNA-modified GCE systems, a K of (3.80+/-0.3) x 10(4) M(-1), saturation coverage value (Gammas) of (2.28+/-0.2) x 10(-10) mol/cm2 and n of 1.2 were obtained. For the complex system, a saturation coverage value (Gammas) of 1.65 x 10(-10) mol/cm2 and n of 1.8 were obtained. 相似文献
994.
995.
996.
Novel chitosan-based graft copolymers (CECTS-g-PDMA) were synthesized through homogeneous graft copolymerization of (N,N-dimethylamino)ethyl methacrylate (DMA) onto N-carboxyethylchitosan (CECTS) in aqueous solution by using ammonium persulfate (APS) as the initiator. The effect of polymerization variables, including initiator concentration, monomer concentration, reaction time and temperature, on grafting percentage was studied. XRD, FTIR, DSC and TGA were used to characterize the graft copolymers. Surface-tension measurements, turbidity measurements and temperature-variable (1)H NMR analysis were combined to investigate the thermal sensitivity of CECTS-g-PDMAs in aqueous solution. 相似文献
997.
Lee HS Kim YJ Bae SS Jeon JH Lim JK Kang SG Lee JH 《Bioscience, biotechnology, and biochemistry》2006,70(5):1140-1147
Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. NA1, revealed the presence of an 1,497 bp open reading frame, encoding a protein of 499 amino acids. The deduced amino acid sequence was similar to thermostable carboxypeptidase 1 from Pyrococcus furiosus, a member of peptidase family M32. Five motifs, including the HEXXH motif with two histidines coordinated with the active site metal, were conserved. The carboxypeptidase gene was cloned and overexpressed in Escherichia coli. Molecular masses assessed by SDS-PAGE and gel filtration were 61 kDa and 125 kDa respectively, which points to a dimeric structure for the recombinant enzyme, designated TNA1_CP. The enzyme showed optimum activity toward Z-Ala-Arg at pH 6.5 and 70-80 degrees C (k(cat)/K(m)=8.3 mM(-1) s(-1)). In comparison with that of P. furiosus CP (k(cat)/K(m)=667 mM(-1) s(-1)), TNA1_CP exhibited 80-fold lower catalytic efficiency. The enzyme showed broad substrate specificity with a preference for basic, aliphatic, and aromatic C-terminal amino acids. This broad specificity was confirmed by C-terminal ladder sequencing of porcine N-acetyl-renin substrate by TNA1_CP. 相似文献
998.
Jo M Ahn JY Lee J Lee S Hong SW Yoo JW Kang J Dua P Lee DK Hong S Kim S 《Oligonucleotides》2011,21(2):85-91
The development of reagents with high affinity and specificity to small molecules is crucial for the high-throughput detection of chemical compounds, such as toxicants or pollutants. Aptamers are short and single-stranded (ss) oligonucleotides able to recognize target molecules with high affinity. Here, we report the selection of ssDNA aptamers that bind to Bisphenol A (BPA), an environmental hormone. Using SELEX process, we isolated high affinity aptamers to BPA from a 10(15) random library of 60 mer ssDNAs. The selected aptamers bound specifically to BPA, but not to structurally similar molecules, such as Bisphenol B with one methyl group difference, or 4,4'-Bisphenol with 2 methyl groups difference. Using these aptamers, we developed an aptamer-based sol-gel biochip and detected BPA dissolved in water. This novel BPA aptamer-based detection can be further applied to the universal and high-specificity detection of small molecules. 相似文献
999.
Gaoqiang Yang Shule Yu Zhenye Kang Yifan Li Guido Bender Bryan S. Pivovar Johney B. Green David A. Cullen Feng‐Yuan Zhang 《Liver Transplantation》2020,10(16)
Low electron/proton conductivities of electrochemical catalysts, especially earth‐abundant nonprecious metal catalysts, severely limit their ability to satisfy the triple‐phase boundary (TPB) theory, resulting in extremely low catalyst utilization and insufficient efficiency in energy devices. Here, an innovative electrode design strategy is proposed to build electron/proton transport nanohighways to ensure that the whole electrode meets the TPB, therefore significantly promoting enhance oxygen evolution reactions and catalyst utilizations. It is discovered that easily accessible/tunable mesoporous Au nanolayers (AuNLs) not only increase the electrode conductivity by more than 4000 times but also enable the proton transport through straight mesopores within the Debye length. The catalyst layer design with AuNLs and ultralow catalyst loading (≈0.1 mg cm?2) augments reaction sites from 1D to 2D, resulting in an 18‐fold improvement in mass activities. Furthermore, using microscale visualization and unique coplanar‐electrode electrolyzers, the relationship between the conductivity and the reaction site is revealed, allowing for the discovery of the conductivity‐determining and Debye‐length‐determining regions for water splitting. These findings and strategies provide a novel electrode design (catalyst layer + functional sublayer + ion exchange membrane) with a sufficient electron/proton transport path for high‐efficiency electrochemical energy conversion devices. 相似文献