首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20225篇
  免费   1498篇
  国内免费   507篇
  22230篇
  2024年   37篇
  2023年   142篇
  2022年   435篇
  2021年   578篇
  2020年   477篇
  2019年   555篇
  2018年   691篇
  2017年   521篇
  2016年   787篇
  2015年   1221篇
  2014年   1344篇
  2013年   1465篇
  2012年   1853篇
  2011年   1704篇
  2010年   1055篇
  2009年   919篇
  2008年   1228篇
  2007年   1125篇
  2006年   944篇
  2005年   831篇
  2004年   824篇
  2003年   674篇
  2002年   530篇
  2001年   373篇
  2000年   315篇
  1999年   293篇
  1998年   125篇
  1997年   101篇
  1996年   86篇
  1995年   88篇
  1994年   79篇
  1993年   59篇
  1992年   100篇
  1991年   95篇
  1990年   68篇
  1989年   66篇
  1988年   46篇
  1987年   35篇
  1986年   31篇
  1985年   30篇
  1984年   20篇
  1983年   22篇
  1982年   18篇
  1980年   27篇
  1979年   20篇
  1977年   18篇
  1976年   18篇
  1975年   19篇
  1974年   18篇
  1969年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
Vascular smooth muscle cell (VSMC) proliferation is a hallmark of neointimal hyperplasia (NIH) in atherosclerosis and restenosis post-balloon angioplasty and stent insertion. Although numerous cytotoxic and cytostatic therapeutics have been developed to reduce NIH, it is improbable that a multifactorial disease can be successfully treated by focusing on a preconceived hypothesis. We, therefore, aimed to identify key molecules involved in NIH via a hypothesis-free approach. We analyzed four datasets (GSE28829, GSE43292, GSE100927, and GSE120521), evaluated differentially expressed genes (DEGs) in wire-injured femoral arteries of mice, and determined their association with VSMC proliferation in vitro. Moreover, we performed RNA sequencing on platelet-derived growth factor (PDGF)-stimulated human VSMCs (hVSMCs) post-phosphoenolpyruvate carboxykinase 2 (PCK2) knockdown and investigated pathways associated with PCK2. Finally, we assessed NIH formation in Pck2 knockout (KO) mice by wire injury and identified PCK2 expression in human femoral artery atheroma. Among six DEGs, only PCK2 and RGS1 showed identical expression patterns between wire-injured femoral arteries of mice and gene expression datasets. PDGF-induced VSMC proliferation was attenuated when hVSMCs were transfected with PCK2 siRNA. RNA sequencing of PCK2 siRNA-treated hVSMCs revealed the involvement of the Akt-FoxO-PCK2 pathway in VSMC proliferation via Akt2, Akt3, FoxO1, and FoxO3. Additionally, NIH was attenuated in the wire-injured femoral artery of Pck2-KO mice and PCK2 was expressed in human femoral atheroma. PCK2 regulates VSMC proliferation in response to vascular injury via the Akt-FoxO-PCK2 pathway. Targeting PCK2, a downstream signaling mediator of VSMC proliferation, may be a novel therapeutic approach to modulate VSMC proliferation in atherosclerosis.  相似文献   
62.
This study investigated the dosage effects of nitric oxide synthase (NOS) inhibitor N(G)-monomethyl-L-arginine (L-NMMA) on intermittent pneumatic compression (IPC)-induced vasodilation in uncompressed upstream muscle and the effects of IPC on endothelial NOS (eNOS) expression in upstream muscle. After L-NMMA infusion, mean arterial pressure increased by 5% from baseline (99.5 +/- 18.7 mmHg; P < 0.05). Heart rate and respiratory rate were not significantly affected. One-hour IPC application on legs induced a 10% dilation from baseline in 10- to 20-microm arterioles and a 10-20% dilation in 21- to 40 microm arterioles and 41- to 70-microm arteries in uncompressed cremaster muscle. IPC-induced vasodilation was dose dependently reduced, abolished, or even reversed by concurrently infused L-NMMA. Moreover, expression of eNOS mRNA in uncompressed cremaster muscle was upregulated to 2 and 2.5 times normal at the end of 1- and 5-h IPC on legs, respectively, and the expression of eNOS protein was upregulated to 1.8 times normal. These increases returned to baseline level after cessation of IPC. The results suggest that eNOS plays an important role in regulating the microcirculation in upstream muscle during IPC.  相似文献   
63.
64.
The anti-diabetic potential of Petalonia binghamiae extract (PBE) was evaluated in vivo. Dietary administration of PBE to streptozotocin (STZ)-induced diabetic mice significantly lowered blood glucose levels and improved glucose tolerance. The mode of action by which PBE attenuated diabetes was investigated in vitro using 3T3-L1 cells. PBE treatment stimulated 3T3-L1 adipocyte differentiation as evidenced by increased triglyceride accumulation. At the molecular level, peroxisome proliferator-activated receptor γ (PPARγ) and terminal marker protein aP2, as well as the mRNA of GLUT4 were up-regulated by PBE. In mature adipocytes, PBE significantly stimulated the uptake of glucose and the expression of insulin receptor substrate-1 (IRS-1). Furthermore, PBE increased PPARγ luciferase reporter gene activity in COS-1 cells. Taken together, these results suggest that the in vivo anti-diabetic effect of PBE is mediated by both insulin-like and insulin-sensitizing actions in adipocytes.  相似文献   
65.
HCC has remained one of the challenging cancers to treat, owing to the paucity of drugs targeting the critical survival pathways. Considering the cancer cells are deficient in DNase activity, the increase of an autonomous apoptisis endonuclease should be a reasonable choice for cancer treatment. In this study, we investigated whether DNASE1L3, an endonuclease implicated in apoptosis, could inhibit the progress of HCC. We found DNASE1L3 was down-regulated in HCC tissues, whereas its high expression was positively associated with the favorable prognosis of patients with HCC. Besides, serum DNASE1L3 levels were lower in HCC patients than in healthy individuals. Functionally, we found that DNASE1L3 inhibited the proliferation of tumor cells by inducing G0/G1 cell cycle arrest and cell apoptosis in vitro. Additionally, DNASE1L3 overexpression suppressed tumor growth in vivo. Furthermore, we found that DNASE1L3 overexpression weakened glycolysis in HCC cells and tissues via inactivating the rate-limiting enzymes involved in PTPN2-HK2 and CEBPβ-p53-PFK1 pathways. Finally, we identified the HBx to inhibit DNASE1L3 expression by up-regulating the expression of ZNF384. Collectively, our findings demonstrated that DNASE1L3 could inhibit the HCC progression through inducing cell apoptosis and weakening glycolysis. We believe DNASE1L3 could be considered as a promising prognostic biomarker and therapeutic target for HCC.  相似文献   
66.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is subject to nitrogen catabolite repression. In the present study we examined the physiological effects of glutamate auxotrophy on cellular metabolism and on the nitrogen catabolite repression of asparaginase II. Glutamate auxotrophic cells, incubated without a glutamate supplement, had a diminished internal pool of alpha-ketoglutarate and a concomitant inability to equilibrate ammonium ion with alpha-amino nitrogen. In the glutamate auxotroph, asparaginase II biosynthesis exhibited a decreased sensitivity to nitrogen catabolite repression by ammonium ion but normal sensitivity to nitrogen catabolite repression by all amino acids tested.  相似文献   
67.

Background

We presented the photoacoustic imaging (PAI) tool and to evaluate whether microcalcifications in breast tissue can be detected on photoacoustic (PA) images.

Methods

We collected 21 cores containing microcalcifications (n = 11, microcalcification group) and none (n = 10, control group) in stereotactic or ultrasound (US) guided 8-gauge vacuum-assisted biopsies. Photoacoustic (PA) images were acquired through ex vivo experiments by transmitting laser pulses with two different wavelengths (700 nm and 800 nm). The presence of microcalcifications in PA images were blindly assessed by two radiologists and compared with specimen mammography. A ratio of the signal amplitude occurring at 700 nm to that occurring at 800 nm was calculated for each PA focus and was called the PAI ratio.

Results

Based on the change of PA signal amplitude between 700 nm and 800 nm, 10 out of 11 specimens containing microcalcifications and 8 out of 10 specimens without calcifications were correctly identified on blind review; the sensitivity, specificity, accuracy, positive predictive and negative predictive values of our blind review were 90.91%, 80.0%, 85.71%, 83.33% and 88.89%. The PAI ratio in the microcalcification group was significantly higher than that in the control group (the median PAI ratio, 2.46 versus 1.11, respectively, P = .001). On subgroup analysis in the microcalcification group, neither malignant diagnosis nor the number or size of calcification-foci was proven to contribute to PAI ratios.

Conclusion

Breast microcalcifications generated distinguishable PA signals unlike breast tissue without calcifications. So, PAI, a non-ionizing and non-invasive hybrid imaging technique, can be an alternative in overcoming the limitations of conventional US imaging.  相似文献   
68.
Jin HT  Jeong YH  Park HJ  Ha SJ 《BMB reports》2011,44(4):217-231
T cell exhaustion develops under conditions of antigen-persistence caused by infection with various chronic pathogens, such as human immunodeficiency virus (HIV) and mycobacterium tuberculosis (TB), or by the development of cancer. T cell exhaustion is characterized by stepwise and progressive loss of T cell function, which is probably the main reason for the failed immunological control of chronic pathogens and cancers. Recent observations have detailed some of the intrinsic and extrinsic factors that influence the severity of T cell exhaustion. Duration and magnitude of antigenic activation of T cells might be associated with up-regulation of inhibitory receptors, which is a major intrinsic factor of T cell exhaustion. Extrinsic factors might include the production of suppressive cytokines, T cell priming by either non-professional antigen-presenting cells (APCs) or tolerogenic dendritic cells (DCs), and alteration of regulatory T (Treg) cells. Further investigation of the cellular and molecular processes behind the development of T cell exhaustion can reveal therapeutic targets and strategies for the treatment of chronic infections and cancers. Here, we report the properties and the mechanisms of T cell exhaustion in a chronic environment.  相似文献   
69.
Synaptosomes were isolated from cerebrums of rats fed standard (20% protein) or protein-free diets for 30 days. Arrhenius plots of their (Na+/K+)ATPase activities revealed a transition temperature of 25.5°C for control rats and 23.4°C for rats on protein-free diet, indicating that the latter increases synaptosomal membrane fluidity. The only change observed in the composition of the synaptosomal membranes was a 26% decrease of sialic acid. In synaptosomes from rats on protein-free diet the uptake of tyrosine was slightly reduced while that of glutamate was not affected. However, the exit of glutamate was reduced.  相似文献   
70.
Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号