Uncaria rhynchophylla (Gouteng) is a famous traditional Chinese medicine used for psychiatric and hypotensive purposes in China. In this study, the ethyl acetate (EtOAc) part of U. rhynchophylla was revealed with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Subsequent investigation on the EtOAc part yielded one new triterpenoid, 3β-formyloxy-6β,19α-dihydroxyurs-12-en-28-oic acid (1) and four known ones, 3β,6β,19α-trihydroxyurs-12-en-28-oic acid (2), 2-oxopomolic acid (3), 3β,19α-dihydroxy-6-oxo-olean-12-en-28-oic acid (4) and sumaresinolic acid (5). The structure of compound 1 was determined by extensive HRESIMS, IR, 1D and 2D NMR spectroscopic analyses. Two ursane-type triterpenoids (2 and 3) showed selective inhibition on PTP1B with IC50 values of 48.2 and 178.7 μM. The enzyme kinetic study suggested that compounds 2 and 3 were mix-type inhibitors on PTP1B with Ki values of 15.6 and 132.5 μM. This investigation manifests the antidiabetic potency of U. rhynchophylla with triterpenoids as the active constituents. 相似文献
A self-assembled nanoparticulate system composed of a folate-conjugated heparin-poly(β-benzyl-l-aspartate) (HP) amphiphilic copolymer was proposed for targeted delivery of the antineoplastic drug paclitaxel (PTX). PTX was incorporated into three types of heparin-based nanoparticles, including HP, folate-conjugated HP (FHP), and folate-polyethylene glycol (PEG)-conjugated HP (FPHP), using a simple dialysis method. The PTX-loaded nanoparticles were then characterized according to particle size (140-190 nm) and size distribution, drug-loading content and efficiency, and in vitro release behavior. In the cellular uptake study using KB cells positive for the folate-receptor (FR), FHP and FPHP nanoparticles showed a much higher cellular uptake than did unconjugated HP nanoparticles. Specifically, when the PEG spacer was inserted between the folate ligand and heparin backbone, FPHP nanoparticles had a greater cellular uptake than did FHP nanoparticles. The in vitro cytotoxicity of PTX-loaded HP, FHP, and FPHP nanoparticles was studied in KB cells and FR-negative A549 cells. Compared with the cytotoxicity in A549 cells, PTX-loaded FHP and FPHP nanoparticles exhibited more potent cytotoxicity in KB cells than did PTX-loaded HP nanoparticles and free-PTX, suggesting that the presence of folate enhanced intracellular uptake via FR-mediated endocytosis. In addition, FPHP nanoparticles exhibited much greater cytotoxicity in KB cells than did FHP nanoparticles. These results suggest that PTX-loaded folate-conjugated HP nanoparticles are a potentially useful delivery system for cancer cells positive for the folate-receptor. 相似文献
The relationships among the genomes of various rhabdoviruses belonging to the vesicular stomatitis virus subgroup were analyzed by an oligonucleotide fingerprinting technique. Of 10 vesicular stomatitis viruses, Indiana serotype (VSV Indiana), obtained from various sources, either no, few, or many differences were observed in the oligonucleotide fingerprints of the 42S RNA species extracted from standard B virions. Analyses of the oligonucleotides obtained from RNA extracted from three separate preparations of VSV Indiana defective T particles showed that their RNAs contain fewer oligonucleotides than the corresponding B particle RNA species. The fingerprints of RNA obtained from five VSV New Jersey serotype viruses were easily distinguished from those of the VSV Indiana isolates. Three of the VSV New Jersey RNA fingerprints were similar to each other but quite different from those of the other two viruses. The RNA fingerprints of two Chandipura virus isolates (one obtained from India and one from Nigeria) were also unique, whereas the fingerprint of Cocal virus RNA was unlike that of the serologically related VSV Indiana. 相似文献
Ubiquitin-fold modifier 1 (Ufm1) is a recently identified new ubiquitin-like protein, whose tertiary structure displays a striking resemblance to ubiquitin. Similar to ubiquitin, it has a Gly residue conserved across species at the C-terminal region with extensions of various amino acid sequences that need to be processed in vivo prior to conjugation to target proteins. Here we report the isolation, cloning, and characterization of two novel mouse Ufm1-specific proteases, named UfSP1 and UfSP2. UfSP1 and UfSP2 are composed of 217 and 461 amino acids, respectively, and they have no sequence homology with previously known proteases. UfSP2 is present in most, if not all, of multicellular organisms including plant, nematode, fly, and mammal, whereas UfSP1 could not be found in plant and nematode upon data base search. UfSP1 and UfSP2 cleaved the C-terminal extension of Ufm1 but not that of ubiquitin or other ubiquitin-like proteins, such as SUMO-1 and ISG15. Both were also capable of releasing Ufm1 from Ufm1-conjugated cellular proteins. They were sensitive to inhibition by sulfhydryl-blocking agents, such as N-ethylmaleimide, and their active site Cys could be labeled with Ufm1-vinylmethylester. Moreover, replacement of the conserved Cys residue by Ser resulted in a complete loss of the UfSP1 and UfSP2 activities. These results indicate that UfSP1 and UfSP2 are novel thiol proteases that specifically process the C terminus of Ufm1. 相似文献
Alpha-conotoxins isolated from Conus venoms contain 11-19 residues and preferentially fold into the globular conformation that possesses a specific disulfide pairing pattern (C1-3, C2-4). We and others isolated a new family of chi-conotoxins (also called lambda conotoxins) with the conserved cysteine framework of alpha-conotoxins but with alternative disulfide pairing (C1-4, C2-3) resulting in the ribbon conformation. In both families, disulfide pairing and hence folding are important for their biological potency. By comparing the structural differences, we identified potential structural determinants responsible for the folding tendencies of these conotoxins. We examined the role of conserved proline in the first intercysteine loop and the conserved C-terminal amide on folding patterns of synthetic analogues of ImI conotoxin by comparing the isoforms with the regiospecifically synthesized conformers. Deamidation at the C-terminus and substitution of proline in the first intercysteine loop switch the folding pattern from the globular form of alpha-conotoxins to the ribbon form of chi/lambda-conotoxins. The findings are corroborated by reciprocal folding of CMrVIA chi/lambda-conotoxins. Substitution of Lys-6 from the first intercysteine loop of CMrVIA conotoxin with proline, as well as the inclusion of an amidated C-terminal shifted the folding preference of CMrVIA conotoxin from its native ribbon conformation toward the globular conformation. Binding assays of ImI conotoxin analogues with Aplysia and Bulinus acetylcholine binding protein indicate that both these substitutions and their consequent conformational change substantially impact the binding affinity of ImI conotoxin. These results strongly indicate that the first intercysteine loop proline and C-terminal amidation act as conformational switches in alpha- and chi/lambda-conotoxins. 相似文献
The array of outer membrane proteins (OMPs) found in Helicobacter pylori provides a crucial component for persistent colonization within the gastric niche. Not only does H. pylori harbor a wide number of OMPs, but these OMPs often vary across strains; this likely contributes to immune evasion, adaptation during long term colonization, and potentially differential disease progression. Previous work from our group described OMP differences among the Bab family (babA, babB, and babC) and Hom family (homA and homB) from 80 American H. pylori clinical isolates (AH) and 80 South Korean H. pylori clinical isolates (KH). In the current study, we expanded our investigation to include the less well characterized Hom family member, HomC. 相似文献
We have reported on the synthesis of ordered hexagonal Au nanoparticle (NPs) arrays by anodic alumina oxide templates (AAO)-assisted thermal treatment. This simple process has led to the formation of an ordered hexagonal array of Au NPs on the surface of AAO. SERS properties of the ordered hexagonal Au NPs could be obtained by varying the size of Au NPs. Compared with the Au thin film on AAO, the SERS intensity of rhodamine adsorbed on the ordered hexagonal Au NPs was about 1000 times stronger. And the hexagonal Au NPs array films have had stronger Raman-enhanced signal compared to the disorder Au NPs films. Simulations according to the three-dimensional finite-difference time domain (3D-FDTD) have displayed that these electric field enhancements of the ordered hexagonal Au NPs are strongly dependent on the gap distance. Plasmonic ordered hexagonal Au NPs could provide us new platforms to realize novel optoelectronic devices.
Achilles tendon injury is one of the challenges of sports medicine, the aetiology of which remains unknown. For a long time, estrogen receptor β (ERβ) has been known as a regulating factor of the metabolism in many connective tissues, such as bone, muscle and cartilage, but little is known about its role in tendon. Recent studies have implicated ERβ as involved in the process of tendon healing. Tendon‐derived stem cells (TDSCs) are getting more and more attention in tendon physiological and pathological process. In this study, we investigated how ERβ played a role in Achilles tendon healing. Achilles tendon injury model was established to analyse how ERβ affected on healing process in vivo. Cell proliferation assay, Western blots, qRT‐PCR and immunocytochemistry were performed to investigate the effect of ERβ on TDSCs. Here, we showed that ERβ deletion in mice resulted in inferior gross appearance, histological scores and, most importantly, increased accumulation of adipocytes during the early tendon healing which involved activation of peroxisome proliferator‐activated receptor γ (PPARγ) signalling. Furthermore, in vitro results of ours confirmed that the abnormity might be the result of abnormal TDSC adipogenic differentiation which could be partially reversed by the treatment of ERβ agonist LY3201. These data revealed a role of ERβ in Achilles tendon healing for the first time, thereby providing a new target for clinical treatment of Achilles tendon injury. 相似文献