首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12197篇
  免费   901篇
  国内免费   365篇
  13463篇
  2024年   27篇
  2023年   102篇
  2022年   289篇
  2021年   387篇
  2020年   289篇
  2019年   351篇
  2018年   403篇
  2017年   317篇
  2016年   423篇
  2015年   680篇
  2014年   790篇
  2013年   862篇
  2012年   1079篇
  2011年   1020篇
  2010年   642篇
  2009年   541篇
  2008年   728篇
  2007年   648篇
  2006年   534篇
  2005年   489篇
  2004年   509篇
  2003年   396篇
  2002年   315篇
  2001年   255篇
  2000年   211篇
  1999年   207篇
  1998年   95篇
  1997年   64篇
  1996年   55篇
  1995年   62篇
  1994年   59篇
  1993年   44篇
  1992年   81篇
  1991年   75篇
  1990年   55篇
  1989年   48篇
  1988年   35篇
  1987年   24篇
  1986年   27篇
  1985年   25篇
  1984年   12篇
  1983年   17篇
  1982年   13篇
  1980年   20篇
  1979年   19篇
  1978年   12篇
  1977年   18篇
  1975年   14篇
  1974年   16篇
  1970年   12篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
72.
73.
The present study was aimed at investigating the expression of metastasis-associated in colon cancer 1 (MACC1) in nasopharyngeal carcinoma (NPC), its relationship with β-catenin, Met expression and the clinicopathological features of NPC, and its roles in carcinogenesis of NPC. Our results showed that MACC1 expression was higher in NPC cells and tissues than that in normal nasopharyngeal cells and chronic inflammation of the nasopharynx tissues, respectively. MACC1 expression was closely related to the clinical stage (p = 0.005) and the N classification (p<0.05) of NPC. Significant correlations between MACC1 expression and Met expression (p = 0.003), MACC1 expression and β-catenin abnormal expression (p = 0.033) were found in NPC tissues. MACC1 knockdown dramatically inhibited cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in NPC cells compared with the control group. Furthermore, MACC1 down-regulation inhibited phosphorylated-Akt (Ser473) and β-catenin expression in NPC cells, but phosphorylated-Erk1/2 expression was not altered. Further study showed that phosphotidylinsitol-3-kinase inhibitor downregulated β-catenin and Met expression in NPC cells. There was a significant relationship between MACC1 expression and phosphorylated-Akt expression (p = 0.03), β-catenin abnormal expression and phosphorylated-Akt expression (p = 0.012) in NPC tissue, respectively. In addition, Epstein Barr virus-encoded oncogene latent membrane protein 1 upregulated MACC1 expression in NPC cells. Our results firstly suggest that MACC1 plays an important role in carcinogenesis of NPC through Akt/β-catenin signaling pathway. Targeting MACC1 may be a novel therapeutic strategy for NPC.  相似文献   
74.
Chronic inflammation is closely associated with metabolic disorders such as obesity and type 2 diabetes, however, the underlying mechanism is unclear. Toll-like receptors (TLRs) play a key role in innate immune response as well as inflammatory signals. Here, we observed that mRNA level of TLR4 was induced during adipocyte differentiation and remarkably enhanced in fat tissues of obese db/db mice. In addition, activation of TLR4 with either LPS or free fatty acids stimulated NFkappaB signaling and expression of inflammatory cytokine genes, such as TNFalpha and IL-6 in 3T3-L1 adipocytes. Furthermore, we discovered that TLR4 activation in 3T3-L1 adipocytes provoked insulin resistance. Taken together, these results suggest that activation of TLR4 in adipocyte might be implicated in the onset of insulin resistance in obesity and type 2 diabetes.  相似文献   
75.
Four 5'-substituted fluoro-neplanocin A analogues la-d were designed and synthesized, and the inhibitory activity against SAH was in the following order: NH2 > SH > F, N3, indicating a hydrogen bonding donor is essential for inhibitory activity.  相似文献   
76.
Plaque-forming dsDNA (>330 kb) viruses that infect certain unicellular, eukaryotic chlorella-like green algae contain approximately 375 protein-encoding genes. These proteins include a 94 amino acid K+ channel protein, called Kcv, as well as two putative ligand-gated ion channels. The viruses also encode other proteins that could be involved in the assembly and/or function of ion channels, including protein kinases and a phosphatase, polyamine biosynthetic enzymes and histamine decarboxylase.  相似文献   
77.
Grasslands are the dominant landscape in China, accounting for 40% of the national land area. Research concerning China's grassland ecosystems can be chronologically summarized into four periods: (i) pre-1950s, preliminary research and survey of grassland vegetation and plant species by Russians, Japanese and Western Europeans, (ii) 1950-1975, exploration and survey of vegetation, soils and topography as part of natural resource inventory programmes by regional and national institutions mainly led by the Chinese Academy of Sciences, (iii) 1976-1995, establishment of field stations for long-term ecological monitoring and studies of ecosystem processes, (iv) 1996-present, comprehensive studies of community dynamics and ecosystem function integrating multi-scale and multidisciplinary approaches and experimental manipulations.Major findings of scientific significance in China's grassland ecosystem research include: (i) improved knowledge on succession and biogeochemistry of the semi-arid and temperate grassland ecosystems, (ii) elucidation of life-history strategies and diapause characteristics of the native grasshopper species as one of the key grassland pests, and (iii) development of effective management strategies for controlling rodent pests in grassland ecosystems. Opportunities exist for using the natural grasslands in northern China as a model system to test ecosystem theories that so far have proven a challenge to ecologists worldwide.  相似文献   
78.
Resistance (R) gene-mediated immunity provides plants with rapid and strain-specific protection against pathogen infection. Our recent study using the genetically tractable Arabidopsis and turnip crinkle virus (TCV) pathosystem revealed a novel component, named CRT1 (compromised for recognition of the TCV CP), that is involved in general R gene-mediated signaling, including that mediated by HRT, an R gene against TCV. The Arabidopsis CRT1 gene family contains six additional members, of which two share high homology to CRT1 (75 and 81% a.a. identity); either CRT1 or its closest homolog restore the cell death phenotype suppressed by crt1. Analysis of single knock-out mutants for CRT1 and its closest homologs suggest that each may have unique and redundant functions. Here, we provide insight into the screening conditions that enabled identification of a mutant gene despite the presence of functionally redundant family members. We also discuss a potential mechanism that may regulate the interaction between CRT1 and R proteins.Key words: resistance gene, ATPase, suppressor screening, Arabidopsis, turnip crinkle virusPlant resistance (R) proteins activate defense signaling pathways following detection of a specific pathogen-encoded effector, or perception that a host factor has been altered by a pathogen effector. The vast majority of R proteins contain nucleotide binding site (NBS) and leucine-rich repeat (LRR) domains. These R proteins can be further divided into two subgroups, TIR-NBS-LRR and CC-NBS-LRR, depending on whether the N terminus consists of a Toll-interleukin 1 receptor (TIR) or a coiled-coiled (CC) domain, respectively.1 Subsequent to pathogen perception, the signal(s) generated by various R proteins likely converge into a limited set of pathways, with CC-NBS-LRR proteins usually utilizing NDR1 and TIR-NBS-LRR proteins generally requiring EDS1.2 However, the molecular mechanism(s) through which R proteins recognize a pathogen(s) and initiate a defense signal(s) remains unclear.To gain insights into this elusive signaling process, several groups have performed genetic screens to isolate mutants whose R gene-mediated resistance responses are suppressed following either pathogen infection or expression of a transgene-encoded bacterial effector protein. Several proteins, including HSP90, SGT1 and RAR1, were shown to be required for resistance triggered by a variety of R proteins, suggesting their universal function in R protein-mediated resistance.37 However, while some R protein-mediated signaling pathways required both RAR1 and SGT1, others needed only one or neither protein. Thus, the requirement for RAR1 and SGT1 appears to be specific to each pathway.8 Further studies revealed that SGT1, RAR1 and HSP90 regulate the stability/accumulation of various R proteins,811 raising the possibility that they serve as (co)chaperones for assembling an active R protein complex.The Arabidopsis R protein HRT was previously shown to recognize the coat protein (CP) of turnip crinkle virus (TCV) and trigger necrotic lesion formation in the inoculated leaf, as well as local and systemic defense responses.12 To identify components of the HRT-mediated signaling pathway, a line containing HRT and an inducible CP transgene was constructed and screened for suppressors of CP-induced cell death.13 One mutant, named crt1 (compromised for recognition of the TCV CP), was identified; it contains a mutation in a GHKL (Gyrase, Hsp90, histidine kinase, MutL) ATPase.13 Interestingly, HSP90 also belongs to this recently recognized ATPase superfamily, although sequence homology between HSP90 and CRT1 is limited to the ATPase domain.14 Either wt CRT1 or its closest homolog, CRT1-h1 (81% a.a. identity to CRT1; 13 suggesting that CRT1 and CRT1-h1 are functionally redundant.

Table 1

Amino-acid sequence identity between CRTI family members in Arabidopsis
Open in a separate window
Open in a separate windowGiven the presence of a functionally redundant homolog sharing 81% a.a. identity to CRT1, it is surprising that the crt1 mutant was identified. Because a previous study using the dexamethasone inducible system reported severe growth arrest and induction of defense-related genes when any transgene was highly expressed,15 we started with a transgenic line expressing CP at a level that was low (particularly in comparison to those attained during TCV infection), yet was sufficient to trigger cell death in non-mutant plants. The low level of CP expression in our transgenic line may have inadvertently provided screening conditions under which a rather modest compromise in R protein-mediated signaling could be detected, such as a mutation in a gene with functionally redundant family members. The crt1 and other crt mutants indeed showed cell death when CP was highly expressed via TCV infection. Thus, it is likely that crt1 would have escaped the suppressor screen if expression of the CP transgene had been higher. Another anti-viral R protein of Arabidopsis, RCY1, was utilized for a similar suppressor screen except that the effector protein was provided via viral infection.16 This screen identified mutations only in RCY1, consistent with our hypothesis that weak activation of the defense signaling pathway facilitated detection of a mutation in a gene that is part of a functionally redundant family.Since HRT-mediated resistance to TCV was impaired in crt1 and was further compromised by silencing closely related CRT1 family members,13 the functional copy number of CRT1 family members appears to be important for resistance. This result, combined with the semi-dominant nature of the crt1 mutation led us to test whether the mutant phenotype is due to haploid insufficiency. Analysis of single T-DNA knockout mutants for CRT1 or CRT1-h1 revealed that resistance to Pseudomonas syringae was not compromised, although it was suppressed in a double knockout mutant (unpublished). These results suggest that loss of a single copy of CRT1 is not sufficient to compromise TCV resistance signaling, thereby arguing that the crt1 phenotype is due to a dosage effect of disabled CRT1 family members. An alternative, although mutually not exclusive, possibility is that crt1 suppresses TCV resistance via a negative gain of function. Ectopic expression of some truncated CRT1 variants suppressed cell death triggered by the constitutively activated R protein ssi4.13 Thus, crt1 might suppress resistance signaling by competing with wild type CRT1 for an interacting partner, likely an R protein. Such a scenario could explain why CRT1 dosage affects TCV resistance.An intriguing possibility raised in a preview to our paper is that CRT1 may activate/prime a cytosolic R protein, which is then localized to the nucleus.17 Several lines of evidence suggest that nuclear localization of some R proteins is required for their function.1820 Thus, CRT1 could be an important player that transits R proteins from one subcellular location to another, although it remains to be demonstrated whether HRT and the other R proteins shown to interact with CRT1 change subcellular location during resistance signaling. Another important question is what triggers CRT1 to activate/prime a client R protein. Western analysis has revealed that CRT1 is present as two distinct isoforms; the larger isoform presumably is created by an unknown post-translational modification.13 Interestingly, the larger CRT1 isoform interacts poorly with the NBS domain of HRT,13 suggesting that this putative modification is a crucial signal to release a client R protein. Thus, characterization of this post-translational modification may provide crucial insight into an R protein-mediate signaling pathway(s) that has been enigmatic for over a decade.  相似文献   
79.
80.
We have collected electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectra from the hydrogen peroxide compound of yeast cytochrome c peroxidase, termed ES, employing EPR microwave frequencies of 9.6 and 11.6 GHz. We have measured and analyzed the temperature dependence of the spin-lattice relaxation rate (1/T1) of the paramagnetic center of ES over the temperature range 1.9 to 4 K. In addition, an upper bound to exchange coupling between the ferryl heme and EPR-visible centers of ES has been calculated and expressions for the dipolar interaction between a ferryl heme and a free radical have been derived. These results all confirm that the EPR signal of ES is not associated with an aromatic amino acid radical, and in particular not with a tryptophanyl radical. This conclusion has led us to consider an explanation of the EPR signal in terms of a nucleophilically stabilized methionyl radical.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号