全文获取类型
收费全文 | 173793篇 |
免费 | 5850篇 |
国内免费 | 2372篇 |
专业分类
182015篇 |
出版年
2024年 | 340篇 |
2023年 | 543篇 |
2022年 | 1346篇 |
2021年 | 2098篇 |
2020年 | 1462篇 |
2019年 | 1811篇 |
2018年 | 13434篇 |
2017年 | 11790篇 |
2016年 | 9737篇 |
2015年 | 4705篇 |
2014年 | 5014篇 |
2013年 | 5614篇 |
2012年 | 10694篇 |
2011年 | 18634篇 |
2010年 | 15479篇 |
2009年 | 11405篇 |
2008年 | 14205篇 |
2007年 | 15403篇 |
2006年 | 4226篇 |
2005年 | 4055篇 |
2004年 | 4437篇 |
2003年 | 3985篇 |
2002年 | 3335篇 |
2001年 | 2422篇 |
2000年 | 2112篇 |
1999年 | 1632篇 |
1998年 | 783篇 |
1997年 | 695篇 |
1996年 | 604篇 |
1995年 | 563篇 |
1994年 | 472篇 |
1993年 | 429篇 |
1992年 | 818篇 |
1991年 | 695篇 |
1990年 | 614篇 |
1989年 | 589篇 |
1988年 | 498篇 |
1987年 | 470篇 |
1986年 | 370篇 |
1985年 | 380篇 |
1984年 | 321篇 |
1983年 | 268篇 |
1982年 | 214篇 |
1980年 | 182篇 |
1979年 | 240篇 |
1978年 | 211篇 |
1977年 | 197篇 |
1974年 | 212篇 |
1972年 | 410篇 |
1971年 | 401篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Chuan-yu Guo Guang-heng Wu Jin Xing Wen-qi Li Ding-zhong Tang Bai-ming Cui 《Plant cell reports》2013,32(5):687-702
Key message
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway.Abstract
A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants. 相似文献62.
Sugunadevi Sakkiah Meganathan Chandrasekaran Yuno Lee Songmi Kim 《Journal of biomolecular structure & dynamics》2013,31(3):235-254
Sirtuin is a member of NAD+-dependent deacetylase family. The structural details of Sirtuin 2 (SIRT2) complex will be very useful to discover the drug which might have beneficial effects on various diseases like cancer, diabetes, etc. Unfortunately, SIRT2 complex structure is not available yet, hence molecular docking was carried out to dock the substrate (NAD+ and acetylated lysine) and inhibitor (sirtinol) in the NAD+ binding site. The suitable binding orientation of substrate and inhibitor in the SIRT2 active site was selected and subjected to 5?ns molecular dynamics simulations to adjust the binding orientation of inhibitor and substrate as well as to identify the conformational changes in the active site. The result provides an insight about 3D SIRT2 structural details as well as the importance of F96 in deacetylation function. In addition, our simulations revealed the displacement of F96 upon substrate and inhibitor binding, inducing an extended conformation of loop3 and changing its interactions with the rest of SIRT2. We believe that our study could be helpful to gain a structural insight of SIRT2 and to design the receptor-based inhibitors. 相似文献
63.
N. E. Geacintov A. G. Gagliano V. Ibanez H. Lee S. A. Jacobs R. G. Harvey 《Journal of biomolecular structure & dynamics》2013,31(4):913-923
Abstract The conformations of the adducts derived from the covalent binding of the two enantiomeric forms of 9,10-epoxy-9,10,11,12-tetrahydrobenzo(e)pyrene (BePE) with native DNA were investigated by the electric linear dichroism technique. Both enantiomers give rise to two major adducts, one of which appears to be a quasi-intercalative site (I) while the other one is an external binding site (II). While the overall linear dichroism spectra are similar, in the case of the (—) enantiomer there is a greater contribution of site II adducts. These results are markedly different from the ones obtained with the two enantiomers of anti-benzo(a)pyrene-7,8-diol-9,10-epoxide (BaPDE), where the (+) enantiomer gives rise almost exclusively to site II binding, while the (—) enantiomer gives rise to both site I and site II covalent binding. The differences in the heterogeneity of binding between BePE and anti-BaPDE enantiomers may be due to the absence of hydroxyl groups in BePE which, in the case of BaPDE, are an important factor in determining the stereoselective properties of the covalent binding to double-stranded DNA. 相似文献
64.
Abstract Room temperature mid-infrared experiments between 500 and 1800 cm?1 have been performed on crystalline deoxyadenosine as a function of pressure up to about 10 GPa. Discontinuities observed near 2 and 4 GPa indicate that two separate phase transitions occur at these pressures. Changes in the spectra suggest that both transitions involve a rearrangement of the pucker of the deoxyribose moiety. The wavenumbers of the vibrational modes shift to higher values with applied pressure. Our results for deoxyadenosine are compared to similar measurements on adenosine. Assignments for the observed modes are made on the basis of work published in the literature. 相似文献
65.
Recent molecular phylogenetic studies reported high diversity of Ruppia species in the Mediterranean. Multiple taxa, including apparent endemics, are known from that region, however, they have thus far not been exposed to phylogenetic analyses aimed at studying their relationships to taxa from other parts of the world. Here we present a comprehensive phylogenetic analyses of the R. maritima complex using data sets composed of DNA sequences of the plastid genome, the multi-copy nuclear ITS region, and the low-copy nuclear phyB gene with a primary focus on the Mediterranean representatives of the complex. As a result, a new lineage, “Drepanensis”, was identified as the seventh entity of the complex. This lineage is endemic to the Mediterranean. The accessions included in the former “Tetraploid” entity were reclassified into two entities: an Asia–Australia–Europe disjunct “Tetraploid_α” with a paternal “Diploid” origin, and a European “Tetraploid_γ” originating from a maternal “Drepanensis” lineage. Another entity, “Tetraploid_β”, is likely to have been originated as a result of chloroplast capture through backcrossing hybridization between paternal “Tetraploid_α” and maternal “Tetraploid_γ”. Additional discovery of multiple tetraploidizations as well as hybridization and chloroplast capture at the tetraploid level indicated that hybridization has been a significant factor in the diversification of Ruppia. 相似文献
66.
Sze-Looi Song Phaik-Eem Lim Siew-Moi Phang Weng-Wah Lee Khanjanapaj Lewmanomont Danilo B. Largo Nurridan Abdul Han 《Journal of applied phycology》2013,25(3):839-846
Gracilaria is a red seaweed that has been cultivated worldwide and is commercially used for food, fertilizers, animal fodder, and phycocolloids. However, the high morphological plasticity of seaweeds often leads to the misidentification in the traditional identification of Gracilaria species. Molecular markers are important especially in the correct identification of Gracilaria species with high economic value. Microsatellite markers were developed from the expressed sequence tags of seaweeds deposited at the National Center for Biotechnology Information database and used for differentiating Gracilaria changii collected at various localities and two other Gracilaria species. Out of 33 primer pairs, only one primer pair gave significant results that can distinguish between three different Gracilaria species as well as G. changii from various localities based on the variation in repeated nucleotides. The unweighted pair group method using arithmetic mean dendrogram analysis grouped Gracilaria species into five main clades: (a) G. changii from Batu Besar (Malacca), Sandakan (Sabah), Bintulu (Sarawak), Batu Tengah (Malacca), Gua Tanah (Malacca), Middle Banks (Penang), Sungai (Sg.) Merbok (Kedah), Teluk Pelandok (Negeri Sembilan), Pantai Dickson (Negeri Sembilan), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore); (b) Gracilaria manilaensis from Cebu, Philippines; (c) G. changii from Morib (Selangor); (d) Gracilaria fisheri from Pattani, Thailand; and (e) G. changii from Pantai Dickson (Negeri Sembilan), Gua Tanah (Malacca), Sg. Merbok (Kedah), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore). This result shows that this primer pair was able to distinguish between three different species, which are G. changii from Morib (Malaysia), G. fisheri from Pattani (Thailand), and G. manilaensis from Cebu (Philippines), and also between different genotypes of G. changii. This suggested that the simple sequence repeat primer we developed was suitable for differentiating between different Gracilaria species due to the polymorphisms caused by the variability in the number of tandem repeats. 相似文献
67.
Brett N. Olsen Agata A. Bielska Tiffany Lee Michael D. Daily Douglas F. Covey Paul H. Schlesinger Nathan A. Baker Daniel S. Ory 《Biophysical journal》2013
Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity. 相似文献
68.
Intrinsically disordered proteins do not have stable secondary and/or tertiary structures but still function. More than 50 prediction methods have been developed and inherent relationships may be expected to exist among them. To investigate this, we conducted molecular simulations and algorithmic analyses on a minimal coarse-grained polypeptide model and discovered a common basis for the charge-hydropathy plot and packing-density algorithms that was verified by correlation analysis. The correlation analysis approach was applied to realistic datasets, which revealed correlations among some physical-chemical properties (charge-hydropathy plot, packing density, pairwise energy). The correlations indicated that these biophysical methods find a projected direction to discriminate ordered and disordered proteins. The optimized projection was determined and the ultimate accuracy limit of the existing algorithms is discussed. 相似文献
69.
We have developed two new continuous coupled assays for ornithine-δ-aminotransferase (OAT) that are more sensitive than previous methods, measure activity in real time, and can be carried out in multiwell plates for convenience and high throughput. The first assay is based on the reduction of Δ1-pyrroline-5-carboxylate (P5C), generated from ornithine by OAT, using human pyrroline 5-carboxylate reductase 1 (PYCR1), which results in the concomitant oxidation of NADH (nicotinamide adenine dinucleotide, reduced form) to NAD+ (nicotinamide adenine dinucleotide, oxidized form). This procedure was found to be three times more sensitive than previous methods and is suitable for the study of small molecules as inhibitors or inactivators of OAT or as a method to determine OAT activity in unknown samples. The second method involves the detection of l-glutamate, produced during the regeneration of the cofactor pyridoxal 5’-phosphate (PLP) of OAT by an unamplified modification of the commercially available Amplex Red l-glutamate detection kit (Life Technologies). This assay is recommended for the determination of the substrate activity of small molecules against OAT; measuring the transformation of l-ornithine at high concentrations by this assay is complicated by the fact that it also acts as a substrate for the l-glutamate oxidase (GluOx) reporter enzyme. 相似文献
70.
M. Madhaiyan S. Poonguzhali M. Senthilkumar D. Pragatheswari K.-C. Lee J.-S. Lee 《Antonie van Leeuwenhoek》2013,103(3):475-484
A novel plant-associated obligate methylotrophic bacterium, designated strain Ca-68T, was isolated from the rhizosphere soil of field-grown red pepper from India. The isolates are strictly aerobic, Gram negative, motile rods multiplying by binary fission and formaldehyde is assimilated via the ribulose monophosphate pathway. A comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Methylobacillus flagellatus, Methylobacillus glycogens and Methylobacillus pratensis, with which it showed pairwise similarity of 97.8, 97.4 and 96.2 %, respectively. The major fatty acids are C16:0, C10:0 3OH and C16:1 ω7c. The G+C content of the genomic DNA is 59.7 mol%. The major ubiquinone is Q-8. Dominant phospholipids are phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Based on 16S rRNA gene sequence analysis and DNA–DNA relatedness (14–19 %) with type strains of the genus Methylobacillus, the novel isolate was classified as a new species of this genus and named Methylobacillus rhizosphaerae Ca-68T (=KCTC 22383T = NCIMB 14472T). 相似文献