首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   39篇
  669篇
  2021年   3篇
  2018年   8篇
  2017年   5篇
  2016年   14篇
  2015年   13篇
  2014年   15篇
  2013年   33篇
  2012年   34篇
  2011年   32篇
  2010年   13篇
  2009年   20篇
  2008年   28篇
  2007年   35篇
  2006年   31篇
  2005年   26篇
  2004年   27篇
  2003年   26篇
  2002年   18篇
  2001年   29篇
  2000年   41篇
  1999年   24篇
  1998年   8篇
  1997年   15篇
  1996年   9篇
  1995年   13篇
  1994年   4篇
  1993年   5篇
  1992年   25篇
  1991年   14篇
  1990年   13篇
  1989年   11篇
  1988年   14篇
  1987年   6篇
  1986年   3篇
  1985年   8篇
  1984年   7篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   2篇
  1972年   3篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
排序方式: 共有669条查询结果,搜索用时 15 毫秒
81.
82.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   
83.
An optimization method for repeated fed-batch fermentation was established with the aim of improving the recombinant human serum albumin (rHSA) production in Pichia pastoris. A simulation model for fed-batch fermentation was formulated and the optimal methanol-feeding policy calculated by dynamic programming method using five different methanol-feeding periods. The necessary state variables were collected from the calculated results and used for further optimization of repeated fed-batch fermentation. The optimal operation policy was investigated using the pre-collected state variables by estimating the overall profit per total methanol-feeding time. The calculated results indicated that the initial cell mass from the 2nd fed-batch fermentation on should be set at 35 or 40 g and methanol-feeding time at 264 h. In repeated fed-batch fermentation using the optimal operation policy, actual culture volume was in good agreement with the values simulated by model equations, but some discrepancy was observed in rHSA production. Minimum experiments were therefore carried out to re-evaluate rHSA production levels, which were then applied in re-calculations to determine the optimal operation policy. The optimal policy for repeated fed-batch fermentation established in the present study (i.e., 4-times-repeated fed-batch fermentation) achieved a 47% increase in annual rHSA production. Optimization of the culture period also brought about a 28% increase in annual rHSA production even in simple (not repeated) fed-batch fermentation.  相似文献   
84.
85.
86.
In the developing chick hypothalamus, Shh and BMPs are expressed in a spatially overlapping, but temporally consecutive, manner. Here, we demonstrate how the temporal integration of Shh and BMP signalling leads to the late acquisition of Pax7 expression in hypothalamic progenitor cells. Our studies reveal a requirement for a dual action of BMPs: first, the inhibition of GliA function through Gli3 upregulation; and second, activation of a Smad5-dependent BMP pathway. Previous studies have shown a requirement for spatial antagonism of Shh and BMPs in early CNS patterning; here, we propose that neural pattern elaboration can be achieved through a versatile temporal antagonism between Shh and BMPs.  相似文献   
87.
Fully modified 4′-thioDNA, an oligonucleotide only comprising 2′-deoxy-4′-thionucleosides, exhibited resistance to an endonuclease, in addition to preferable hybridization with RNA. Therefore, 4′-thioDNA is promising for application as a functional oligonucleotide. Fully modified 4′-thioDNA was found to behave like an RNA molecule, but no details of its structure beyond the results of circular dichroism analysis are available. Here, we have determined the structure of fully modified 4′-thioDNA with the sequence of d(CGCGAATTCGCG) by NMR. Most sugars take on the C3′-endo conformation. The major groove is narrow and deep, while the minor groove is wide and shallow. Thus, fully modified 4′-thioDNA takes on the A-form characteristic of RNA, both locally and globally. The only structure reported for 4′-thioDNA showed that partially modified 4′-thioDNA that contained some 2′-deoxy-4′-thionucleosides took on the B-form in the crystalline form. We have determined the structure of 4′-thioDNA in solution for the first time, and demonstrated unexpected differences between the two structures. The origin of the formation of the A-form is discussed. The remarkable biochemical properties reported for fully modified 4′-thioDNA, including nuclease-resistance, are rationalized in the light of the elucidated structure.  相似文献   
88.
5-Formyluracil (fU), a major methyl oxidation product of thymine, forms correct (fU:A) and incorrect (fU:G) base pairs during DNA replication. In the accompanying paper (Masaoka, A., Terato, H., Kobayashi, M., Honsho, A., Ohyama, Y., and Ide, H. (1999) J. Biol. Chem. 274, 25136-25143), it has been shown that fU correctly paired with A is recognized by AlkA protein (Escherichia coli 3-methyladenine DNA glycosylase II). In the present work, mispairing frequency of fU with G and cellular repair protein that specifically recognized fU:G mispairs were studied using defined oligonucleotide substrates. Mispairing frequency of fU was determined by incorporation of 2'-deoxyribonucleoside 5'-triphosphate of fU opposite template G using DNA polymerase I Klenow fragment deficient in 3'-5' exonuclease. Mispairing frequency of fU was dependent on the nearest neighbor base pair in the primer terminus and 2-12 times higher than that of thymine at pH 7.8 and 2.6-6.7 times higher at pH 9.0 with an exception of the nearest neighbor T(template):A(primer). AlkA catalyzed the excision of fU placed opposite G, as well as A, and the excision efficiencies of fU for fU:G and fU:A pairs were comparable. In addition, MutS protein involved in methyl-directed mismatch repair also recognized fU:G mispairs and bound them with an efficiency comparable to T:G mispairs, but it did not recognize fU:A pairs. Prior complex formation between MutS and a heteroduplex containing an fU:G mispair inhibited the activity of AlkA to fU. These results suggest that fU present in DNA can be restored by two independent repair pathways, i.e. the base excision repair pathway initiated by AlkA and the methyl-directed mismatch repair pathway initiated by MutS. Biological relevance of the present results is discussed in light of DNA replication and repair in cells.  相似文献   
89.
Properties of the receptor for influenza C virus were studied. Although the receptor for influenza C virus on chicken erythrocytes was destroyed by the homologous virion, neuraminidase activity could not be detected in any of the influenza C virus strains tested. The receptor activity of chicken erythrocytes for influenza C virus was diminished by formaldehyde treatment but not by periodate oxidation. There was a considerable variation in the pattern and the titer of hemagglutination of influenza C virus when human erythrocytes of different blood types were used; the virus agglutinated most type B erythrocytes but not type A erythrocytes. By using human type B erythrocytes, differences among strains of influenza C virus in the hemagglutinating activity were also demonstrated. These results showed that both the receptor for and the receptor-destroying activity of influenza C virus were completely different from those of influenza A or B virus and also that carbohydrates were not involved in the receptor for influenza C virus.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号