首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   91篇
  1492篇
  2023年   8篇
  2022年   10篇
  2021年   19篇
  2020年   17篇
  2019年   14篇
  2018年   18篇
  2017年   17篇
  2016年   40篇
  2015年   50篇
  2014年   59篇
  2013年   80篇
  2012年   89篇
  2011年   97篇
  2010年   61篇
  2009年   68篇
  2008年   76篇
  2007年   73篇
  2006年   98篇
  2005年   66篇
  2004年   68篇
  2003年   64篇
  2002年   52篇
  2001年   29篇
  2000年   56篇
  1999年   31篇
  1998年   26篇
  1997年   9篇
  1996年   10篇
  1995年   10篇
  1994年   7篇
  1993年   8篇
  1992年   20篇
  1991年   21篇
  1990年   16篇
  1989年   17篇
  1988年   14篇
  1987年   17篇
  1986年   10篇
  1985年   13篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1980年   4篇
  1979年   7篇
  1977年   2篇
  1976年   1篇
  1975年   5篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1492条查询结果,搜索用时 31 毫秒
151.
Proteomic analysis of slow- and fast-twitch skeletal muscles   总被引:5,自引:0,他引:5  
Skeletal muscles are composed of slow- and fast-twitch muscle fibers, which have high potential in aerobic and anaerobic ATP production, respectively. To investigate the molecular basis of the difference in their functions, we examined protein profiles of skeletal muscles using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis with pH 4-7 and 6-11 isoelectric focusing gels. A comparison between rat soleus and extensol digitorum longus (EDL) muscles that are predominantly slow- and fast-twitch fibers, respectively, showed that the EDL muscle had higher levels of glycogen phosphorylase, most glycolytic enzymes, glycerol 3-phosphate dehydrogenase, and creatine kinase; while the soleus muscle had higher levels of myoglobin, TCA cycle enzymes, electron transfer flavoprotein, and carbonic anhydrase III. The two muscles also expressed different isoforms of contractile proteins including myosin heavy and light chains. These protein patterns were further compared with those of red and white gastrochnemius as well as red and white quadriceps muscles. It was found that metabolic enzymes showed a concerted regulation dependent on muscle fiber types. On the other hand, expression of contractile proteins seemed to be independent of the metabolic characteristics of muscle fibers. These results suggest that metabolic enzymes and contractile proteins show different expression patterns in skeletal muscles.  相似文献   
152.
The three‐dimensional distribution of the specific absorption rate of energy (SAR) in phantom models was analysed to detect clusters of mobile phones producing similar spatial deposition of energy in the head. The clusters' characteristics were described from the phones external features, frequency band and communication protocol. Compliance measurements with phones in cheek and tilt positions, and on the left and right side of a physical phantom were used. Phones used the Personal Digital Cellular (PDC), Code division multiple access One (CdmaOne), Global System for Mobile Communications (GSM) and Nordic Mobile Telephony (NMT) communication systems, in the 800, 900, 1500 and 1800 MHz bands. Each phone's measurements were summarised by the half‐ellipsoid in which the SAR values were above half the maximum value. Cluster analysis used the Partitioning Around Medoids algorithm. The dissimilarity measure was based on the overlap of the ellipsoids, and the Manhattan distance was used for robustness analysis. Within the 800 MHz frequency band, and in part within the 900 MHz and the 1800 MHz frequency bands, weak clustering was obtained for the handset shape (bar phone, flip with top and flip with central antennas), but only in specific positions (tilt or cheek). On measurements of 120 phones, the three‐dimensional distribution of SAR in phantom models did not appear to be related to particular external phone characteristics or measurement characteristics, which could be used for refining the assessment of exposure to radiofrequency energy within the brain in epidemiological studies such as the Interphone. Bioelectromagnetics. Bioelectromagnetics 32:634–643, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   
153.
The intestinal permeability of benzamidine analogue thrombin inhibitor is correlated with molecular volume, lipophilicity (calculated log P and IAM column capacity factor), hydrogen bond acidity/basicity and dipolarity.  相似文献   
154.
A high-throughput in planta overexpression screen of a Nicotiana benthamiana cDNA library identified a mitogen activated protein kinase kinase (MAPKK), NbMKK1, as a potent inducer of hypersensitive response (HR)-like cell death. NbMKK1-mediated cell death was attenuated in plants whereby expression of NbSIPK, an ortholog of tobacco SIPK and Arabidopsis AtMPK6, was knocked down by virus-induced gene silencing (VIGS), suggesting that NbMKK1 functions upstream of NbSIPK. In accordance with this result, NbMKK1 phosphorylated NbSIPK in vitro, and furthermore NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. VIGS of NbMKK1 in N. benthamiana resulted in a delay of Phytophthora infestans INF1 elicitin-mediated HR as well as in the reduction of resistance against a non-host pathogen Pseudomonas cichorii. Our data of NbMKK1, together with that of LeMKK4,1 demonstrate the presence of a novel defense signaling pathway involving NbMKK1/LeMKK4 and SIPK.Key Words: MAPK, defense, cell death, in planta screenMitogen activated protein kinase (MAPK) cascades are highly conserved signaling pathways in eukaryotes, comprising three tiered classes of protein kinase, MAPKKK (MAPKK kinase), MAPKK and MAPK, that sequentially relay phosphorylation signals.2 The Arabidopsis genome carries genes for 20 MAPKs, 10 MAPKKs3 and more than 25 MAPKKKs.4 In plants, MAPK signaling is known to function in various biotic4,5 and abiotic6 stress responses and cytokinesis.7 In defense signaling, extensive research has been carried out for two tobacco MAPKs, SIPK8 (salicylic-acid-induced protein kinase; hereafter designated as NtSIPK) and WIPK9 (wound-induced protein kinase = NtWIPK), and their orthologs in Arabidopsis10 (AtMPK6 and ATMPK3, respectively), partly because kinase activities of these two MAPKs are easy to detect by an in gel kinase assay using myeline basic protein (MBP) as substrate.11 Both NtSIPK and NtWIPK are activated by the interaction between host resistance (R)- gene and cognate avirulence gene of pathogen11,12 and elicitor perception by host cells.13,14 Shuqun Zhang and his group showed that an upstream kinase of both NtSIPK and NtWIPK is NtMEK2.15 Transient overexpression of constitutively active NtMEK2 caused phosphorylation of NtSIPK and NtWIPK, resulting in rapid HR-like cell death in tobacco leaves.15 Later, the same lab showed that overexpression of NtSIPK alone also caused HR-like cell death.16 The downstream target proteins of NtSIPK and AtMPK6 are being identified and include 1-aminocyclopropane-1-carboxylic acid sythase-6 (ACS-6).17,18 Although recent studies identified another MAPK cascade (NtMEK1 → Ntf6) involved in defense responses19,20 we can still say that the current research focus of MAPK defense signaling centers around the cascade comprising [NtMEK2→ NtSIPK/NtWIPK→ target proteins] of tobacco and its orthologous pathways in other plant species.In an effort to search for plant genes involved in HR-like cell death, we have been employing a high-throughput in planta expression screen of N. benthamiana cDNA libraries. In this experimental system, a cDNA library was made in a binary potato virus X (PVX)-based expression vector pSfinx.21 The cDNA library was transferred to Agrobacterium tumefaciens, and 40,000 of the bacterial colonies were individually inoculated by toothpicks onto leaf blades of N. benthamiana leaves. The phenotype around the inoculated site was observed 1–2 weeks following the inoculation. This rapid screen identified 30 cDNAs that caused cell death after overexpression, including genes coding for ubiquitin proteins, RNA recognition motif (RRM) containing proteins, a class II ethylene-responsive element binding factor (EREBP)-like protein22 and a MAPKK protein (this work). Such an in planta screening technique has been used before for the isolation of fungal21 and oomycete23,24 elicitors and necrosis inducing genes, but not for isolation of plant genes. Overexpression screening of cDNA libraries is a common practice in prokaryotes, yeast and amimal cells,25,26 so it is a surprise that this approach has not been systematically applied in plants. Given its throughput, we propose that this virus-based transient overexpression system is a highly efficient way to isolate novel plant genes by functional screen.27 Since overexpression frequently causes non-specific perturbation of signaling, genes identified by overexpression should be further validated by loss-of-function assays, for instance, VIGS.28Overexpression of the identified MAPKK gene, NbMKK1, triggered a rapid generation of H2O2, followed by HR-like cell death in N. benthamiana leaves (this work). NbMKK1-GFP fusion protein overexpression also caused cell death, and curiously NbMKK1-GFP was shown to localize consistently in the nucleus. Sequence comparison classified NbMKK1 to the Group D of MAPKKs about which little information is available. So far, a MAPKK, LeMKK4, from tomato belonging to the Group D MAPKKs, was shown to cause cell death after overexpression.1 Based on amino acid sequence similarity and phylogenetic analyses, LeMKK4 and NbMKK1 seem to be orthologs. To see whether NbMKK1 transduces signals through SIPK and WIPK, we performed NbMKK1 overexpression in N. benthamiana plants whereby the expression of either NbSIPK or NbWIPK (WIPK ortholog in N. benthamiana) was silenced by VIGS. NbMKK1 did not induce cell death in NbSIPK-silenced plants, suggesting that the NbMKK1 cell death signal is transmitted through NbSIPK. Indeed, NbMKK1 phosphorylated NbSIPK in vitro, and NbMKK1 and NbSIPK physically interacted in yeast two-hybrid assay. These results suggest that NbMKK1 interacts with NbSIPK, most probably with its N-terminal docking domain, and phosphorylates NbSIPK in vivo to transduce the cell death signal downstream.NbMKK1 exhibits constitutive expression in leaves. To determine the function of NbMKK1 in defense, we silenced NbMKK1 by VIGS, and such plants were challenged with Phytophthora infestans INF1 elicitin29 and Pseudomonas cichorii, a non-host pathogen. INF1-mediated HR cell death was remarkably delayed in NbMKK1-silenced plants. Likewise, plant defense against P. cichorii was compromised in NbMKK1-silenced plants. These results indicate that NbMKK1 is an important component of signaling of INF1-mediated HR and non-host resistance to P. cichorii.Together, our analyses of NbMKK1 and independent work from Greg Martin''s lab on LeMKK41 suggest that a Group D MAPKK, NbMKK1/LeMKK4, functions upstream of SIPK and transduces defense signals in these solanaceous plants (Fig. 1). In plants as well as in other eukaryotes, it is common that kinases have multiple partners. The work on these kinases fits this concept. A single MAPK (e.g., SIPK) is phosphorylated by multiple MAPKKs (e.g., NtMEK2 and NbMKK1), and a single MAPKK (e.g., NtMEK2) can phosphorylate multiple MAPKs (e.g., NtSIPK and NtWIPK).Open in a separate windowFigure 1Defense signaling through NbMKK1/LeMKK4. Two defense signal pathways involving NtMEK2 (indicated as MEK2) → WIPK/SIPK and NtMEK1(indicated as MEK1) → Ntf6 are well documented. By our and Pedley and Martin''s1 works, another novel MAPKK, NbMKK1/LeMKK4 was demonstrated to participate in defense signaling by phosphorylation of SIPK.  相似文献   
155.
Mechanisms for asporin function and regulation in articular cartilage   总被引:1,自引:0,他引:1  
Osteoarthritis (OA), the most prevalent form of skeletal disease, represents a leading cause of disability following middle age. OA is characterized by the loss of articular cartilage; however, the details of its etiology and pathogenesis remain unclear. Recently, we demonstrated a genetic association between the cartilage extracellular matrix protein asporin and OA (Kizawa, H., Kou, I., Iida, A., Sudo, A., Miyamoto, Y., Fukuda, A., Mabuchi, A., Kotani, A., Kawakami, A., Yamamoto, S., Uchida, A., Nakamura, K., Notoya, K., Nakamura, Y., and Ikegawa, S. (2005) Nat. Genet. 37, 138-144). Furthermore, we showed that asporin binds to transforming growth factor-beta (TGF-beta), a key cytokine in OA pathogenesis, and inhibits TGF-beta-induced chondrogenesis. To date, functional data for asporin have come primarily from mouse cell culture models of developing cartilage rather than from human articular cartilage cells, in which OA occurs. Here, we describe mechanisms for asporin function and regulation in human articular cartilage. Asporin blocks chondrogenesis and inhibits TGF-beta1-induced expression of matrix genes and the resulting chondrocyte phenotypes. Small interfering RNA-mediated knockdown of asporin increases the expression of cartilage marker genes and TGF-beta1; in turn, TGF-beta1 stimulates asporin expression in articular cartilage cells, suggesting that asporin and TGF-beta1 form a regulatory feedback loop. Asporin inhibits TGF-beta/Smad signaling upstream of TGF-beta type I receptor activation in vivo by co-localizing with TGF-beta1 on the cell surface and blocking its interaction with the TGF-beta type II receptor. Our results provide a basis for elucidating the role of asporin in the molecular pathogenesis of OA.  相似文献   
156.
Neuroglycan C (NGC) is a transmembrane-type chondroitin sulfate proteoglycan that is exclusively expressed in the central nervous system. We report that the recombinant ectodomain of NGC core protein enhances neurite outgrowth from rat neocortical neurons in culture. Both protein kinase C (PKC) inhibitors and phosphatidylinositol 3-kinase (PI3K) inhibitors attenuated the NGC-mediated neurite outgrowth in a dose-dependent manner, suggesting that NGC promotes neurite outgrowth via PI3K and PKC pathways. The active sites of NGC for neurite outgrowth existed in the epidermal growth factor (EGF)-like domain and acidic amino acid (AA)-domain of the NGC ectodomain. The EGF-domain caused cells to extend preferentially one neurite from a soma, whereas the AA-domain caused several neurites to develop. The EGF-domain also enhanced neurite outgrowth from GABA-positive neurons, but the AA-domain did not. These results suggest that the EGF-domain and AA-domain have distinct functions in terms of neuritogenesis. From these findings, NGC can be considered to be involved in neuritogenesis in the developing central nervous system.  相似文献   
157.
In Swiss 3T3 cells, colon tumor-promoting deoxycholate (DOC) enhanced DNA synthesis which was induced by fibroblast growth factor (FGF) in the presence of insulin. This effect was observed only when DOC was added within 10 h after the addition of FGF. DOC by itself did not induce DNA synthesis irrespective of the presence or absence of insulin. Similar results were obtained with other colon tumor-promoting bile acids such as cholate, chenodeoxycholate and taurocholate. In contrast to these bile acids, 12-O-tetradecanoylphorbol-13-acetate (TPA) induced DNA synthesis fully without FGF in the presence of insulin. DOC did not affect TPA-induced DNA synthesis. Prolonged treatment of the cells with phorbol-12,13-dibutyrate caused the down-regulation of the phorbol ester receptor and rendered the cells unresponsive to TPA. In these cells, FGF still induced DNA synthesis in the presence of insulin, but the maximal level was reduced to about one third of that in the control cells. DOC did not enhance this DNA synthesis any more. DOC did not alter the binding of FGF to the cells. These results indicate that colon tumor-promoting bile acids enhance the mitogenic action of FGF and thereby stimulate DNA synthesis, although the phorbol ester substitutes for the mitogenic action of FGF.  相似文献   
158.
It is essential to know the detailed structure of the thin filament to understand the regulation mechanism of striated muscle contraction. Fluorescence resonance energy transfer (FRET) was used to construct an atomic model of the actin-tropomyosin (Tm)-troponin (Tn) core domain complex. We generated single-cysteine mutants in the 167-195 region of Tm and in TnC, TnI, and the β-TnT 25-kDa fragment, and each was attached with an energy donor probe. An energy acceptor probe was located at actin Gln41, actin Cys374, or the actin nucleotide-binding site. From these donor-acceptor pairs, FRET efficiencies were determined with and without Ca(2+). Using the atomic coordinates for F-actin, Tm, and the Tn core domain, we searched all possible arrangements for Tm or the Tn core domain on F-actin to calculate the FRET efficiency for each donor-acceptor pair in each arrangement. By minimizing the squared sum of deviations for the calculated FRET efficiencies from the observed FRET efficiencies, we determined the location of Tm segment 167-195 and the Tn core domain on F-actin with and without Ca(2+). The bulk of the Tn core domain is located near actin subdomains 3 and 4. The central helix of TnC is nearly perpendicular to the F-actin axis, directing the N-terminal domain of TnC toward the actin outer domain. The C-terminal region in the I-T arm forms a four-helix-bundle structure with the Tm 175-185 region. After Ca(2+) release, the Tn core domain moves toward the actin outer domain and closer to the center of the F-actin axis.  相似文献   
159.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   
160.
To discern expression patterns of individual storage-protein genes in hexaploid wheat (Triticum aestivum cv Chinese Spring), we analyzed comprehensive expressed sequence tags (ESTs) of common wheat using a bioinformatics technique. The gene families for alpha/beta-gliadins and low molecular-weight glutenin subunit were selected from the EST database. The alignment of these genes enabled us to trace the single nucleotide polymorphism sites among both genes. The combinations of single nucleotide polymorphisms allowed us to assign haplotypes into their homoeologous chromosomes by allele-specific PCR. Phylogenetic analysis of these genes showed that both storage-protein gene families rapidly diverged after differentiation of the three genomes (A, B, and D). Expression patterns of these genes were estimated based on the frequencies of ESTs. The storage-protein genes were expressed only during seed development stages. The alpha/beta-gliadin genes exhibited two distinct expression patterns during the course of seed maturation: early expression and late expression. Although the early expression genes among the alpha/beta-gliadin and low molecular-weight glutenin subunit genes showed similar expression patterns, and both genes from the D genome were preferentially expressed rather than those from the A or B genome, substantial expression of two early expression genes from the A genome was observed. The phylogenetic relationships of the genes and their expression patterns were not correlated. These lines of evidence suggest that expression of the two storage-protein genes is independently regulated, and that the alpha/beta-gliadin genes possess novel regulation systems in addition to the prolamin box.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号