首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   41篇
  643篇
  2023年   6篇
  2022年   7篇
  2021年   11篇
  2020年   10篇
  2019年   10篇
  2018年   10篇
  2017年   6篇
  2016年   24篇
  2015年   30篇
  2014年   31篇
  2013年   46篇
  2012年   54篇
  2011年   63篇
  2010年   28篇
  2009年   36篇
  2008年   47篇
  2007年   42篇
  2006年   50篇
  2005年   31篇
  2004年   35篇
  2003年   30篇
  2002年   18篇
  2001年   1篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
排序方式: 共有643条查询结果,搜索用时 15 毫秒
141.
Mitochondrial DNA 5178 cytosine/adenine (Mt5178 C/A) polymorphism is reportedly associated with longevity in the Japanese population, and the Mt5178A genotype may resist the onset of type 2 diabetes. To investigate whether Mt5178 C/A polymorphism is associated with glucose tolerance, we conducted a cross-sectional study using the 75-g oral glucose tolerance test (OGTT) in which non-diabetic Japanese male subjects were classified into three subgroups by body mass index (BMI): BMI<22 (n=91); 22< or =BMI<25 (n=138); and BMI> or =25 (n=67). The frequency of Mt5178A was significantly lower among 'BMI<22' subjects exhibiting impaired fasting glucose and impaired glucose tolerance than among those with normal glucose tolerance. In the 'BMI<22' group, fasting plasma glucose (FPG) levels and plasma glucose levels at 60 and 120 min after glucose load (OGTT-1h and OGTT-2h, respectively) were significantly lower in the Mt5178A genotype than in the Mt5178C genotype. After adjusting for age, BMI, habitual smoking, habitual drinking and family history of diabetes, FPG levels and OGTT-2h levels were still significantly lower in the Mt5178A genotype than in the Mt5178C genotype. However, after adjusting for covariates, in both the '22< or =BMI<25' and 'BMI> or =25' groups, FPG levels were significantly higher in the Mt5178A genotype than in the Mt5178C genotype. Differences in the effect of alcohol consumption on FPG levels and glucose tolerance between the Mt5178 C/A genotypes were observed. The present results suggest that Mt5178 C/A polymorphism may be associated with FPG levels and glucose tolerance in middle-aged Japanese men.  相似文献   
142.
Seed dormancy—the temporary failure of a viable seed to germinate under favorable conditions—is a complex characteristic influenced by many genes and environmental factors. To detect the genetic factors associated with seed dormancy in rice, we conducted a QTL analysis using chromosome segment substitution lines (CSSLs) derived from a cross between Nona Bokra (strong dormancy) and Koshihikari (weak dormancy). Comparison of the levels of seed dormancy of the CSSLs and their recurrent parent Koshihikari revealed that two chromosomal regions—on the short arms of chromosomes 1 and 6—were involved in the variation in seed dormancy. Further genetic analyses using an F2 population derived from crosses between the CSSLs and Koshihikari confirmed the allelic differences and the chromosomal locations of three putative QTLs: Sdr6 on chromosome 1 and Sdr9 and Sdr10 on chromosome 6. The Nona Bokra alleles of the three QTLs were associated with decreased germination rate. We discuss the physiological features of the CSSLs and speculate on the possible mechanisms of dormancy in light of the newly detected QTLs.  相似文献   
143.
HIF1 and HIF2 are major mediators for hypoxia sensing and response. Their roles in early differentiation of two key cell types involved in oxygen supply in amniotes, the primitive blood cells and endothelial cells, are unclear. We show that, in pre-circulation avian embryos, hif1alpha and hif2alpha are expressed in embryonic and extraembryonic tissues, respectively. hif2alpha, first identified as epas1, is not present in endothelial cells at any pre-circulation stage under either normoxia or hypoxia conditions. Differentiating blood cells express low levels of hif2alpha under normoxia, but show a strong and rapid upregulation under hypoxia. Blood cell differentiation, however, is not affected under either hypoxia or hyperoxia conditions.  相似文献   
144.
145.
146.
147.
Although Buchnera, the endosymbiotic bacteria of aphids, are close relatives of Escherichia coli, their genome size is only a seventh that of E. coli. In this study, we estimated the genomic copy number of Buchnera by dot-blot hybridization and fluorimetry using a video-intensified microscope photon-counting system and obtained convincing evidence that each cell of these bacteria contains an average of 120 genomic copies. Thus, the Buchnera symbiont, with many copies of a small-sized genome, is reminiscent of cell organelles such as mitochondria and chloroplasts. Received: 25 November 1998 / Accepted: 25 December 1998  相似文献   
148.
Ban  Syuhei  Toda  Tatsuki  Koyama  Mitsuhiko  Ishikawa  Kanako  Kohzu  Ayato  Imai  Akio 《Limnology》2019,20(1):93-100
Limnology - There are many problems related to overgrowth of aquatic macrophytes in many lakes and rivers throughout the world; for instance, the harvesting costs in Lake Biwa have been increasing...  相似文献   
149.
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.  相似文献   
150.
The success of postnatal uterine morphogenesis dictates, in part, the embryotrophic potential and functional capacity of the adult uterus. The definitive role of Wnt7a in postnatal uterine development and adult function requires a conditional knockout, because global deletion disrupts müllerian duct patterning, specification, and cell fate in the fetus. The Wnt7a-null uterus appears to be posteriorized because of developmental defects in the embryo, as evidenced by the stratified luminal epithelium that is normally found in the vagina and the presence of short and uncoiled oviducts. To understand the biological role of WNT7A after birth and allow tissue-selective deletion of Wnt7a, we generated loxP-flanked exon 2 mice and conditionally deleted Wnt7a after birth in the uterus by crossing them with Pgr(Cre) mice. Morphological examination revealed no obvious differences in the vagina, cervix, oviduct, or ovary. The uteri of Wnt7a mutant mice contained no endometrial glands, whereas all other uterine cell types appeared to be normal. Postnatal differentiation of endometrial glands was observed in control mice, but not in mutant mice, between Postnatal Days 3 and 12. Expression of morphoregulatory genes, particularly Foxa2, Hoxa10, Hoxa11, Msx1, and Wnt16, was disrupted in the Wnt7a mutant uteri. Conditional Wnt7a mutant mice were not fertile. Although embryos were present in uteri of mutant mice on Day 3.5 of pregnancy, blastocyst implantation was not observed on Day 5.5. Furthermore, expression of several genes (Foxa2, Lif, Msx1, and Wnt16) was reduced or absent in adult Wnt7a-deleted uteri on Day 3.5 postmating. These results indicate that WNT7A plays a critical role in postnatal uterine gland morphogenesis and function, which are important for blastocyst implantation and fertility in the adult uterus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号