首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   12篇
  226篇
  2024年   4篇
  2023年   2篇
  2022年   8篇
  2021年   20篇
  2020年   5篇
  2019年   2篇
  2018年   13篇
  2017年   8篇
  2016年   17篇
  2015年   16篇
  2014年   20篇
  2013年   22篇
  2012年   25篇
  2011年   21篇
  2010年   10篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1991年   1篇
  1978年   1篇
排序方式: 共有226条查询结果,搜索用时 11 毫秒
201.
Glutaredoxins (Grxs) are short, cysteine-rich glutathione (GSH)-mediated oxidoreductases. In this study, a chickpea (Cicer arietinum L.) glutaredoxin [LOC101493651 (CaGrx)] gene has been selected based on screening experiments with two contrasting varieties of chickpea, PUSA-362 (drought-tolerant) and ICC-1882 (drought-sensitive) under drought and salinity. The tolerant variety showed higher CaGrx gene expression, as compared to less in the sensitive variety, under both the stresses. The CaGrx gene was then over-expressed in Arabidopsis thaliana and were exposed to drought and salinity. The over-expression of CaGrx elevated the activity of glutaredoxin, which induced antioxidant enzymes (glutathione reductase; GR, glutathione peroxidase; GPX, catalase; CAT, ascorbate peroxidase; APX, glutathione-S-transferase; GST, superoxide dismutase; SOD, monodehydroascorbate reductase; MDHAR, and dehydroascorbate reductase; DHAR), antioxidants (GSH and ascorbate) and stress-responsive amino acids (cysteine and proline). Enhancement in the antioxidant defense system possibly administered tolerance in transgenics against both stresses. CaGrx reduced stress markers (H2O2, TBARS, and electrolyte leakage) and enhanced root growth, seed germination, and survival against both stresses. The physiological parameters (net photosynthesis; PN, water use efficiency; WUE, stomatal conductance; gs, transpiration; E, electron transport rate; ETR, and photochemical quenching; qP), chlorophylls and carotenoids, were improved in the transgenics during both stresses, that maintained the photosynthetic apparatus and protected the plants from damage. The enhanced activity of the cysteine biosynthesis enzyme, o-acetylserine (thiol) lyase (OAS-TL), increased the cysteine level in the transgenics, which elevated glutathione biosynthesis to maintain the ascorbate–glutathione cycle under both stresses. This investigation verified that the CaGrx gene provides tolerance against salinity and drought, maintaining physiological and morphological performances, and could be exploited for genetic engineering approaches to overcome both the stresses in various crops.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00999-z.  相似文献   
202.
Inferring the dynamics of pathogen transmission during an outbreak is an important problem in infectious disease epidemiology. In mathematical epidemiology, estimates are often informed by time series of confirmed cases, while in phylodynamics genetic sequences of the pathogen, sampled through time, are the primary data source. Each type of data provides different, and potentially complementary, insight. Recent studies have recognised that combining data sources can improve estimates of the transmission rate and the number of infected individuals. However, inference methods are typically highly specialised and field-specific and are either computationally prohibitive or require intensive simulation, limiting their real-time utility. We present a novel birth-death phylogenetic model and derive a tractable analytic approximation of its likelihood, the computational complexity of which is linear in the size of the dataset. This approach combines epidemiological and phylodynamic data to produce estimates of key parameters of transmission dynamics and the unobserved prevalence. Using simulated data, we show (a) that the approximation agrees well with existing methods, (b) validate the claim of linear complexity and (c) explore robustness to model misspecification. This approximation facilitates inference on large datasets, which is increasingly important as large genomic sequence datasets become commonplace.  相似文献   
203.
Elicitors are considered as biostimulants for growth improvement and enhancement of secondary metabolite content. To date, only seaweed extract (SWE) powder has been studied for its effect on picroside-I (P-I) production in in vitro grown Picrorhiza kurroa plants. However, little is known at the molecular level about P-I production in P. kurroa plants upon SWE treatment. Here, we investigated the relative effects of supplying different elicitors including methyl jasmonate (MeJa), sodium nitroprusside (SNP), and abscisic acid (ABA) with SWE on plant growth and P-I production in addition to their effects at the molecular level reflecting the metabolic status of P-I biosynthesis. Our results indicated that only SWE, ABA, and SNP stimulated P-I production by 2.60-, 2.01-, and 1.35-fold, respectively, whereas MeJa decreased P-I content. Interestingly, SWE modulated all four integrating secondary metabolic pathways, covering almost all critical steps in the methylerythritol phosphate (MEP), mevalonate (MVA), iridoid, and phenylpropanoid pathways to stimulate P-I biosynthesis. SNP targeted the MVA/MEP pathways in conjunction with the iridoid pathway, whereas ABA modulated the phenylpropanoid pathway to increase the P-I content in P. kurroa. This is apparently the first report on treatment of different elicitors in in vitro grown P. kurroa plants for eliciting P-I content and exploring the role of different elicitors at the molecular level.  相似文献   
204.
205.
A major cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) spectrum disorder is the hexanucleotide G4C2 repeat expansion in the first intron of the C9orf72 gene. Many underlying mechanisms lead to manifestation of disease that include toxic gain-of-function by repeat G4C2 RNAs, dipeptide repeat proteins, and a reduction of the C9orf72 gene product. The C9orf72 protein interacts with SMCR8 and WDR41 to form a trimeric complex and regulates multiple cellular pathways including autophagy. Here, we report the structure of the C9orf72-SMCR8 complex at 3.8 Å resolution using single-particle cryo-electron microscopy (cryo-EM). The structure reveals 2 distinct dimerization interfaces between C9orf72 and SMCR8 that involves an extensive network of interactions. Homology between C9orf72-SMCR8 and Folliculin-Folliculin Interacting Protein 2 (FLCN-FNIP2), a GTPase activating protein (GAP) complex, enabled identification of a key residue within the active site of SMCR8. Further structural analysis suggested that a coiled-coil region within the uDenn domain of SMCR8 could act as an interaction platform for other coiled-coil proteins, and its deletion reduced the interaction of the C9orf72-SMCR8 complex with FIP200 upon starvation. In summary, this study contributes toward our understanding of the biological function of the C9orf72-SMCR8 complex.

Structural and biochemical characterisation of the C9orf72-SMCR8 complex sheds light on its overall architecture and highlights its role as a multi-functional scaffold for coordinating autophagy.  相似文献   
206.
Horizontal Gene Transfer (HGT) events, initially thought to be rare in Mycobacterium tuberculosis, have recently been shown to be involved in the acquisition of virulence operons in M. tuberculosis. We have developed a new partitioning framework based HGT prediction algorithm, called Grid3M, and applied the same for the prediction of HGTs in Mycobacteria. Validation and testing using simulated and real microbial genomes indicated better performance of Grid3M as compared with other widely used HGT prediction methods. Specific analysis of the genes belonging to dormancy/reactivation regulons across 14 mycobacterial genomes indicated that horizontal acquisition is specifically restricted to important accessory proteins. The results also revealed Burkholderia species to be a probable source of HGT genes belonging to these regulons. The current study provides a basis for similar analyses investigating the functional/evolutionary aspects of HGT genes in other pathogens. A database of Grid3M predicted HGTs in completely sequenced genomes is available at https://metagenomics.atc.tcs.com/Grid3M/ .  相似文献   
207.
Spontaneous preterm birth (PTB, <37 weeks gestation) is a major public health concern, and children born preterm have a higher risk of morbidity and mortality throughout their lives. Recent studies suggest that fetal DNA methylation of several genes varies across a range of gestational ages (GA), but it is not yet clear if fetal epigenetic changes associate with PTB. The objective of this study is to interrogate methylation patterns across the genome in fetal leukocyte DNA from African Americans with early PTB (241/7–340/7 weeks; N = 22) or term births (390/7–406/7weeks; N = 28) and to evaluate the association of each CpG site with PTB and GA. DNA methylation was assessed across the genome with the HumanMethylation450 BeadChip. For each individual sample and CpG site, the proportion of DNA methylation was estimated. The associations between methylation and PTB or GA were evaluated by fitting a separate linear model for each CpG site, adjusting for relevant covariates. Overall, 29 CpG sites associated with PTB (FDR<.05; 5.7×10−10<p<2.9×10−6) independent of GA. Also, 9637 sites associated with GA (FDR<.05; 9.5×10−16<p<1.0×10−3), with 61.8% decreasing in methylation with shorter GA. GA-associated CpG sites were depleted in the CpG islands of their respective genes (p<2.2×10−16). Gene set enrichment analysis (GSEA) supported enrichment of GA-associated CpG sites in genes that play a role in embryonic development as well as the extracellular matrix. Additionally, this study replicated the association of several CpG sites associated with gestational age in other studies (CRHBP, PIK3CD and AVP). Dramatic differences in fetal DNA methylation are evident in fetuses born preterm versus at term, and the patterns established at birth may provide insight into the long-term consequences associated with PTB.  相似文献   
208.
Pseudomonas aeruginosa and Aspergillus fumigatus are the leading bacterial and fungal pathogens in cystic fibrosis (CF). We have shown that Af biofilms are susceptible to Pseudomonas, particularly CF phenotypes. Those studies were performed with a reference virulent non-CF Aspergillus. Pseudomonas resident in CF airways undergo profound genetic and phenotypic adaptations to the abnormal environment. Studies have also indicated Aspergillus from CF patients have unexpected profiles of antifungal susceptibility. This would suggest that Aspergillus isolates from CF patients may be different or altered from other clinical isolates. It is important to know whether Aspergillus may also be altered, as a result of that CF environment, in susceptibility to Pseudomonas. CF Aspergillus proved not different in that susceptibility.  相似文献   
209.
To better study the role of PKCδ in normal function and disease, we developed an ATP analog-specific (AS) PKCδ that is sensitive to specific kinase inhibitors and can be used to identify PKCδ substrates. AS PKCδ showed nearly 200 times higher affinity (Km) and 150 times higher efficiency (kcat/Km) than wild type (WT) PKCδ toward N6-(benzyl)-ATP. AS PKCδ was uniquely inhibited by 1-(tert-butyl)-3-(1-naphthyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1NA-PP1) and 1-(tert-butyl)-3-(2-methylbenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (2MB-PP1) but not by other 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) analogs tested, whereas WT PKCδ was insensitive to all PP1 analogs. To understand the mechanisms for specificity and affinity of these analogs, we created in silico WT and AS PKCδ homology models based on the crystal structure of PKCι. N6-(Benzyl)-ATP and ATP showed similar positioning within the purine binding pocket of AS PKCδ, whereas N6-(benzyl)-ATP was displaced from the pocket of WT PKCδ and was unable to interact with the glycine-rich loop that is required for phosphoryl transfer. The adenine rings of 1NA-PP1 and 2MB-PP1 matched the adenine ring of ATP when docked in AS PKCδ, and this interaction prevented the potential interaction of ATP with Lys-378, Glu-428, Leu-430, and Phe-633 residues. 1NA-PP1 failed to effectively dock within WT PKCδ. Other PP1 analogs failed to interact with either AS PKCδ or WT PKCδ. These results provide a structural basis for the ability of AS PKCδ to efficiently and specifically utilize N6-(benzyl)-ATP as a phosphate donor and for its selective inhibition by 1NA-PP1 and 2MB-PP1. Such homology modeling could prove useful in designing molecules to target PKCδ and other kinases to understand their function in cell signaling and to identify unique substrates.  相似文献   
210.
Longevity is modulated by a range of conserved genes in eukaryotes, but it is unclear how variation in these genes contributes to the evolution of longevity in nature. Mutations that increase life span in model organisms typically induce trade‐offs which lead to a net reduction in fitness, suggesting that such mutations are unlikely to become established in natural populations. However, the fitness consequences of manipulating longevity have rarely been assessed in heterogeneous environments, in which stressful conditions are encountered. Using laboratory selection experiments, we demonstrate that long‐lived, stress‐resistant Caenorhabditis elegans age‐1(hx546) mutants have higher fitness than the wild‐type genotype if mixed genotype populations are periodically exposed to high temperatures when food is not limited. We further establish, using stochastic population projection models, that the age‐1(hx546) mutant allele can confer a selective advantage if temperature stress is encountered when food availability also varies over time. Our results indicate that heterogeneity in environmental stress may lead to altered allele frequencies over ecological timescales and indirectly drive the evolution of longevity. This has important implications for understanding the evolution of life‐history strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号