首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   19篇
  2023年   1篇
  2022年   4篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   14篇
  2012年   18篇
  2011年   16篇
  2010年   6篇
  2009年   9篇
  2008年   11篇
  2007年   17篇
  2006年   7篇
  2005年   17篇
  2004年   16篇
  2003年   16篇
  2002年   22篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   10篇
  1991年   12篇
  1990年   5篇
  1989年   12篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有333条查询结果,搜索用时 15 毫秒
21.
Immunization with superantigen in vivo induces transient activation of superantigen-specific T cells, followed by a superantigen-nonresponsive state. In this study, using a TCR alpha knock-in mouse in which the knock-in alpha-chain can be replaced with endogenous alpha-chain through secondary rearrangement, we show that immunization of superantigen changes the TCR alpha-chain expression on peripheral superantigen-specific T cells, induces expression of recombination-activating genes, and generates DNA double-strand breaks at the TCR alpha-chain locus. These results suggest that viral superantigens are capable of inducing peripheral TCR revision. Our findings thus provide a new perspective on pathogen-immune system interaction.  相似文献   
22.
In order to develop an effective therapeutic intervention for patients with pancreatic cancer, we examined the genetic alternations of pancreatic cancer. Based on these results, we are developing a new gene therapy targeting the genetic character of pancreatic cancer using mutant adenoviruses selectively replication-competent in tumor cells. Loss of heterozygosity (LOH) of 30% or more were observed on chromosome arms 17p (47%), 9p (45%), 18q (43%), 12q (34%), and 6q (30%). LOH of 12q, 17p, and 18q showed the significant association with poor prognosis. These data strongly suggest that mutation of the putative suppressor genes, TP53 and SMAD4 play significant roles in the disease progression. Based on this rationale, we are developing a new gene therapy targeting tumors without normal TP53 function. E1B-55kDa-deleted adenovirus (AxE1AdB) can selectively replicate in TP53-deficient human tumor cells but not cells with functional TP53. We evaluated the therapeutic effect of this AxE1AdB on pancreatic cancer without normal TP53 function. The growth of human pancreatic tumor in SCID mice model was markedly inhibited by the consecutive injection of AxE1AdB. Furthermore, AxE1AdB is not only the strong weapon but also useful carrier of genes possessing anti-tumor activities as a virus vector specific to tumors without normal TP53 function. It was reported that uracil phosphoribosyl transferase (UPRT) overcomes 5FU resistance. UPRT catalyzes the synthesis of 5-fluorouridine monophosphate (FUMP) from Uracil and phosphoribosylpyrophosphate (PRPP). The antitumor effect of 5FU is enhanced by augmenting 5-fluorodeoxyuridine monophosphate (FdUMP) converted from FUMP, which inhibits Thymidylate Synthetase (TS). The therapeutic advantage of restricted replication competent adenovirus that expresses UPRT (AxE1AdB-UPRT) was evaluatedin an intra-peritoneal disseminated tumor model. To study the anti-tumor effect of AxE1AdB-UPRT/5FU, mice with disseminated AsPC-1 tumors were administered the adenovirus, followed by the 5FU treatment. It was shown that the treatment with AxE1AdB-UPRT/5FU caused a dramatic reduction of the disseminated tumor burden without toxicity in normal tissues. These results revealed thatthe AxE1AdB-UPRT/5FU system is a promising tool for intraperitoneal disseminated pancreatic cancer.  相似文献   
23.
The regulation of phospholipase D1 (PLD1), which has been shown to be activated by protein kinase C (PKC) alpha, was investigated in the human melanoma cell lines. In G361 cell line, which lacks PKCalpha, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced PLD activation was potentiated by introducing PKCalpha by the adenovirus vector. The kinase-negative PKCalpha elevated TPA-induced PLD activity less significantly than the wild type. A PKC specific inhibitor GF109203X lowered PLD activation in the cells expressing PKCalpha, but did not prevent PLD potentiation induced by the kinase-negative PKCalpha. Expression of PKCbetaII and the kinase-negative PKCbetaII enhanced TPA-stimulated PLD activity moderately in MeWo cell line, in which PKCbetaII is absent. Furthermore, the TPA treatment increased the association of PKCalpha, PKCbetaII, and their kinase-negative mutants with PLD1 in melanoma cells. These results indicate that PLD1 is dually regulated through phosphorylation as well as through the protein-protein interaction by PKCalpha, and probably by PKCbetaII, in vivo.  相似文献   
24.
Reactive oxygen species (ROS) are implicated in cardiovascular diseases. ROS, such as H2O2, act as second messengers to activate diverse signaling pathways. Although H2O2 activates several tyrosine kinases, including the epidermal growth factor (EGF) receptor, JAK2, and PYK2, in vascular smooth muscle cells (VSMCs), the intracellular mechanism by which ROS activate these tyrosine kinases remains unclear. Here, we identified two distinct signaling pathways required for receptor and nonreceptor tyrosine kinase activation by H2O2 involving a metalloprotease-dependent generation of heparin-binding EGF-like growth factor (HB-EGF) and protein kinase C (PKC)-delta activation, respectively. H2O2-induced EGF receptor tyrosine phosphorylation was inhibited by a metalloprotease inhibitor, whereas the inhibitor had no effect on H2O2-induced JAK2 tyrosine phosphorylation. HB-EGF neutralizing antibody inhibited H2O2-induced EGF receptor phosphorylation. In COS-7 cells expressing an HB-EGF construct tagged with alkaline phosphatase, H2O2 stimulates HB-EGF production through metalloprotease activation. By contrast, dominant negative PKC-delta transfection inhibited H2O2-induced JAK2 phosphorylation but not EGF receptor phosphorylation. Dominant negative PYK2 inhibited H2O2-induced JAK2 activation but not EGF receptor activation, whereas dominant negative PKC-delta inhibited PYK2 activation by H2O2. These data demonstrate the presence of distinct tyrosine kinase activation pathways (PKC-delta/PYK2/JAK2 and metalloprotease/HB-EGF/EGF receptor) utilized by H2O2 in VSMCs, thus providing unique therapeutic targets for cardiovascular diseases.  相似文献   
25.
Vascular smooth muscle cell (SMC) hyperplasia is known to be an important component in the pathogenesis of arteriosclerosis and restenosis. Although heparin has been well recognized as the representative molecule suppressing SMC growth in vitro, attempts to use heparin as a therapeutic anti-restenosis drug have not favorably influenced the angiographic or clinical outcome after angioplasty in some clinical trials. In this study, we have examined the effect of histidine-rich glycoprotein (HRG), a relatively abundant serum glycoprotein (~100 micrograms/ml in human serum), on the growth inhibition of cultured vascular SMC by heparin. Vascular SMC growth was significantly inhibited by heparin, giving nearly 85% inhibition with 100 micrograms/ml heparin. HRG reversed heparin-induced SMC growth inhibition in a dose dependent manner; 75% restoration of cell growth was observed when 100 micrograms/ml of HRG was co-added with 100 micrograms/ml heparin. Interestingly, micromolar concentrations of the zinc ion (0-10 microM), compatible with concentrations released from activated platelets, were found to enhance the restorative action of HRG. Western blot experiment demonstrated no significant amounts of the HRG moiety in fetal bovine serum, eliminating the possible contribution of contaminant HRG from culture media. These findings indicate that HRG, in combination with the zinc ion, plays a role in modulating the SMC growth response in pathophysiological states and explain the lack of success of heparin as a therapeutic anti-restenosis drug in clinical trials.  相似文献   
26.
H/K-ATPase preparations (the G1 membrane) from pig stomach contain both kinases and phosphatases and show reversible phosphorylation of Tyr(7), Tyr(10), and Ser(27) residues of the alpha-chain of H/K-ATPase. The Tyr-kinase is sensitive to genistein and quercetin and recognized by anti-c-Src antibody. The Ser-kinase is dependent on Ca(2)(+) (K(0.5) = 0.9 microM), sensitive to a PKC inhibitor, and recognized by antibodies against PKCalpha and PKCbetaII. The addition of 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonic acid (CHAPS) caused a dramatic increase in the phosphorylation of added synthetic copolymer substrates and permitted the phosphorylation of maltose-binding proteins fused with the N-terminal domain of alpha-chains. The phosphotyrosine phosphatase was inhibited by vanadate. The phosphoserine phosphatase was inhibited by okadaic acid and by inhibitor-2. The presence of protein phosphatase-1 was immunologically detected. Column chromatographic separation of CHAPS-solubilized G1 membrane and others indicate the apparent molecular weight of the Src-kinase to be approximately 60 kDa, the PKCalpha and/or PKCbII to be approximately 80 kDa, the Tyr-phosphatase to be 200 kDa, and PP-1 to be approximately 35 kDa. These data show that these membrane-bound enzyme systems are in sufficiently close proximity to be responsible for reversible phosphorylation of Tyr(7), Tyr(10), and Ser(27) of the catalytic subunit of membrane H/K-ATPase in parietal cells, the physiological role of which is unknown.  相似文献   
27.
28.
Protein phosphatase 1γ, a serine/threonine phosphatase, is a metalloprotein that coordinates two Mn2+ in the active site when expressed in Escherichia coli in a buffer containing MnCl2. Herein, we report on the oxidatively induced copper for manganese exchange in protein phosphatase 1γ, thus enabling firm confirmation of the four histidine (His) amino acid residues (His66, His125, His173, and His248) involved in metal coordination. By exchanging manganese with copper the oxidation yields for the peptides increased dramatically, thus simplifying detection of the oxidized peptides and analysis of the oxidation sites within the oxidized peptides. We also found that when copper was added during the oxidation process a new metal coordination center was formed at cysteine 39, 105, 140, and 155.  相似文献   
29.

Background

Some studies have reported gender differences in N170, a face-selective event-related potential (ERP) component. This study investigated gender differences in N170 elicited under oddball paradigm in order to clarify the effect of task demand on gender differences in early facial processing.

Findings

Twelve males and 10 females discriminated targets (emotional faces) from non-targets (emotionally neutral faces) under an oddball paradigm, pressing a button as quickly as possible in response to the target. Clear N170 was elicited in response to target and non-target stimuli in both males and females. However, females showed more negative amplitude of N170 in response to target compared with non-target, while males did not show different N170 responses between target and non-target.

Conclusions

The present results suggest that females have a characteristic of allocating attention at an early stage when responding to faces actively (target) compared to viewing faces passively (non-target). This supports previous findings suggesting that task demand is an important factor in gender differences in N170.  相似文献   
30.
Endothelial cell apoptosis is associated with vascular injury and predisposes to atherogenesis. Endothelial cells express anti-apoptotic genes including Bcl-2, Bcl-XL and survivin, which also contribute to angiogenesis and vascular remodeling. We report a central role for protein kinase Cepsilon (PKCepsilon) in the regulation of Bcl-2 expression and cytoprotection of human vascular endothelium against apoptosis. Using myristoylated inhibitory peptides, a predominant role for PKCepsilon in vascular endothelial growth factor-mediated endothelial resistance to apoptosis was revealed. Immunoblotting of endothelial cells infected with an adenovirus expressing a constitutively active form of PKCepsilon (Adv-PKCepsilon-CA) or control Adv-beta-galactosidase demonstrated a 3-fold, PKCepsilon-dependent increase in Bcl-2 expression, with no significant change in Bcl-XL, Bad, Bak, or Bax. The induction of Bcl-2 inhibited apoptosis induced by serum starvation or etoposide, and PKCepsilon activation attenuated etoposide-induced caspase-3 cleavage. The functional role of Bcl-2 was confirmed with Bcl-2 antagonist HA-14-1. Inhibition of phosphoinositide 3-kinase attenuated vascular endothelial growth factor-induced protection against apoptosis, and this was rescued by overexpression of constitutively active PKCepsilon, suggesting PKCepsilon acts downstream of phosphoinositide 3-kinase. Co-immunoprecipitation studies demonstrated a physical interaction between PKCepsilon and Akt, which resulted in formation of a signaling complex, leading to optimal induction of Bcl-2. This study reveals a pivotal role for PKCepsilon in endothelial cell cytoprotection against apoptosis. We demonstrate that PKCepsilon forms a signaling complex and acts co-operatively with Akt to protect human vascular endothelial cells against apoptosis through induction of the anti-apoptotic protein Bcl-2 and inhibition of caspase-3 cleavage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号