首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1609篇
  免费   149篇
  国内免费   68篇
  2023年   11篇
  2022年   29篇
  2021年   51篇
  2020年   23篇
  2019年   40篇
  2018年   36篇
  2017年   42篇
  2016年   57篇
  2015年   68篇
  2014年   81篇
  2013年   81篇
  2012年   111篇
  2011年   99篇
  2010年   77篇
  2009年   67篇
  2008年   76篇
  2007年   86篇
  2006年   83篇
  2005年   62篇
  2004年   55篇
  2003年   54篇
  2002年   56篇
  2001年   25篇
  2000年   31篇
  1999年   32篇
  1998年   18篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   14篇
  1993年   12篇
  1992年   25篇
  1991年   27篇
  1990年   22篇
  1989年   31篇
  1988年   30篇
  1987年   19篇
  1986年   19篇
  1985年   13篇
  1984年   17篇
  1983年   11篇
  1982年   10篇
  1981年   11篇
  1980年   7篇
  1979年   11篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1974年   5篇
  1973年   10篇
排序方式: 共有1826条查询结果,搜索用时 15 毫秒
91.
The fungal pathogen Botrytis cinerea causes grey mould, a commercially damaging disease of strawberry. This pathogen affects fruit in the field, storage, transport and market. The presence of grey mould is the most common reason for fruit rejection by growers, shippers and consumers, leading to significant economic losses. Here, we review the biology and epidemiology of the pathogen, mechanisms of infection and the genetics of host plant resistance. The development of grey mould is affected by environmental and genetic factors; however, little is known about how B. cinerea and strawberry interact at the molecular level. Despite intensive efforts, breeding strawberry for resistance to grey mould has not been successful, and the mechanisms underlying tolerance to B. cinerea are poorly understood and under-investigated. Current control strategies against grey mould include pre- and postharvest fungicides, yet they are generally ineffective and expensive. In this review, we examine available research on horticultural management, chemical and biological control of the pathogen in the field and postharvest storage, and discuss their relevance for integrative disease management. Additionally, we identify and propose approaches for increasing resistance to B. cinerea in strawberry by tapping into natural genetic variation and manipulating host factors via genetic engineering and genome editing.  相似文献   
92.
Breast cancer remains a substantial clinical problem worldwide, and cancer-associated cachexia is a condition associated with poor prognosis in this and other malignancies. Adipose tissue is involved in the development and progression of cancer-associated cachexia, but its various roles and mechanisms of action are not completely defined, especially as it relates to breast cancer. Interleukin 6 has been implicated in several mechanisms contributing to increased breast cancer tumorigenesis, as well as a net-negative energy balance and cancer-associated cachexia via adipose tissue remodeling in other models of cancer; however, its potential role in breast cancer-associated white adipose browning has not been explored. In this study, we demonstrate localized white adipose tissue browning in a spontaneous model of murine mammary cancer. We then used an in vitro murine adipocyte culture system with the E0771 and 4T1 cell lines as models of breast cancer. We demonstrate that while the E0771 and 4T1 secretomes and cross-talk with white adipocytes alter white adipocyte mRNA expression, they do not directly induce white adipocyte browning. Additionally, we show that neither exogenous administration of interleukin 6 alone or with its soluble receptor directly induce white adipocyte browning. Together, these results demonstrate that neither the E0771 or 4T1 murine breast cancer cell lines, nor interleukin 6, directly cause browning of cultured white adipocytes. This suggests that their roles in adipose tissue remodeling are more complex and indirect in nature.  相似文献   
93.
Dong Q  Yao J  Fang JN  Ding K 《Carbohydrate research》2007,342(10):1343-1349
Two major polysaccharide fractions, CDA-1A and CDA-3B, were isolated from the cold-water extract of Cistanche deserticola Y. C. Ma, a holoparasitic plant and a valuable traditional Chinese medicine, using anion-exchange chromatography on DEAE-cellulose and gel-permeation chromatography on Sephacryl S-300 and Sephadex G-150. Their major structural features were elucidated using component and linkage analyses, periodate oxidation, Smith degradation, partial acid hydrolysis, and NMR spectroscopy. The results indicated that CDA-1A is an alpha-(1-->4)-D-glucan with alpha-(1-->6)-linked branches attached to the O-6 of branch points and that CDA-3B is an RG-I polysaccharide containing a typical rhamnogalacturonan backbone and arabinogalactan or arabinan branches. Bioactivity tests showed that CDA-1A is inert for T-cell proliferation stimulation but active for B-cell proliferation, while CDA-3B is potent for the stimulation of both T- and B-cell proliferation.  相似文献   
94.
95.
A novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4-14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13. The location of DUSP27 on chromosome 10q22, 50 kb upstream of DUSP13, suggests that these two genes arose by gene duplication. DUSP27 is an active enzyme, and its kinetic parameters and were determined. DUSP27 is a cytosolic enzyme, expressed in skeletal muscle, liver and adipose tissue, suggesting its possible role in energy metabolism.  相似文献   
96.
97.
Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3′,5′-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1, and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.  相似文献   
98.
The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model works with two other genes: hepatocyte nuclear factor 1B (HNF1B) and cAMP responsive element binding protein 3-like 1 (CREB3L1). By comparing carcinoma tissue and normal tissue samples, we extracted all the differentially expressed mRNAs. The bioinformatics analysis resulted in the discovery of three prominent genes. Eventually, the three genes were utilized to train a deep-learning model. An additional wet experiment was conducted to validate the effect of IL35. All the differentially expressed genes were enriched into nine groups, each of which has specific biological functions. Given that the three significant genes HNF1B, CREB3L1, and IL35 as diagnostic features, a deep-learning model was constructed, reaching an accuracy of 93% in the training set and 87% in the test set. Our findings suggest that IL35, along with the other two signatures, can distinguish esophageal tumor samples from normal samples precisely.  相似文献   
99.
The filamentous fungus Aspergillus oryzae was recently used as a heterologous host for fungal secondary metabolite production. Here, we aimed to produce the plant polyketide curcumin in A. oryzae. Curcumin is synthesized from feruloyl-coenzyme A (CoA) and malonyl-CoA by curcuminoid synthase (CUS). A. oryzae expressing CUS produced curcumin (64 μg/plate) on an agar medium containing feruloyl-N-acetylcysteamine (a feruloyl-CoA analog). To increase curcumin yield, we attempted to strengthen the supply of malonyl-CoA using two approaches: enhancement of the reaction catalyzed by acetyl-CoA carboxylase (ACC), which produces malonyl-CoA from acetyl-CoA, and inactivation of the acetyl-CoA-consuming sterol biosynthesis pathway. Finally, we succeeded in increasing curcumin yield sixfold by the double disruption of snfA and SCAP; SnfA is a homolog of SNF1, which inhibits ACC activity by phosphorylation in Saccharomyces cerevisiae and SCAP is positively related to sterol biosynthesis in Aspergillus terreus. This study provided useful information for heterologous polyketide production in A. oryzae.  相似文献   
100.
Background: The current studies only indicated that long non-coding RNA (lncRNA) APCDD1L-AS1, as a novel lncRNA, may play a role in oral squamous cell carcinoma and lung cancer. However, its potential role in clear cell renal cell carcinoma (ccRCC) and its possible mechanism of action remain vague.Methods: TCGA-KIRC and GEO data and qRT-PCR and pyrosequencing results of clinical specimens were used to identify the expression level and DNA methylation status of APCDD1L-AS1. The effects of APCDD1L-AS1 overexpression on ccRCC growth and metastasis were determined by function experiments. Western blot and Tandem mass tags (TMT) were utilized to explore the relationship between APCDD1L-AS1 and VHL expression and its downstream underlying mechanisms.Results: The expression of APCDD1L-AS1 was downregulated in ccRCC. Decreased APCDD1L-AS1 expression was related to higher tumor stage and histological grade and shorter RFS (Relapse-free survival). Besides, APCDD1L-AS1 overexpression restrained the growth and metastasis of ccRCC cells in vitro and in vivo. Moreover, reduced APCDD1L-AS1 expression could be caused by DNA hypermethylation and loss of von Hippel Lindau (VHL) protein expression. Furthermore, the dysregulation of histones expression caused by APCDD1L-AS1 overexpression may be one of the important mechanisms to suppress the progression of ccRCC.Conclusion: APCDD1L-AS1 was able to inhibit the progression of ccRCC, and its decreased expression could be caused by DNA hypermethylation and loss of VHL protein expression. Therefore, APCDD1L-AS1 may serve as a new therapeutic target in the treatment of ccRCC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号