首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   902篇
  免费   40篇
  国内免费   2篇
  2023年   5篇
  2022年   22篇
  2021年   47篇
  2020年   32篇
  2019年   51篇
  2018年   41篇
  2017年   26篇
  2016年   30篇
  2015年   38篇
  2014年   49篇
  2013年   60篇
  2012年   66篇
  2011年   60篇
  2010年   40篇
  2009年   27篇
  2008年   48篇
  2007年   43篇
  2006年   39篇
  2005年   50篇
  2004年   34篇
  2003年   31篇
  2002年   22篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   4篇
  1966年   1篇
  1933年   1篇
  1932年   1篇
排序方式: 共有944条查询结果,搜索用时 62 毫秒
21.
DEK1, the single calpain of land plants, is a member of the ancient membrane bound TML–CysPc–C2L calpain family that dates back 1.5 billion years. Here we show that the CysPc–C2L domains of land plant calpains form a separate sub‐clade in the DEK1 clade of the phylogenetic tree of plants. The charophycean alga Mesostigma viride DEK1‐like gene is clearly divergent from those in land plants, suggesting that a major evolutionary shift in DEK1 occurred during the transition to land plants. Based on genetic complementation of the Arabidopsis thaliana dek1‐3 mutant using CysPc–C2L domains of various origins, we show that these two domains have been functionally conserved within land plants for at least 450 million years. This conclusion is based on the observation that the CysPc–C2L domains of DEK1 from the moss Physcomitrella patens complements the A. thaliana dek1‐3 mutant phenotype. In contrast, neither the CysPc–C2L domains from M. viride nor chimeric animal–plant calpains complement this mutant. Co‐evolution analysis identified differences in the interactions between the CysPc–C2L residues of DEK1 and classical calpains, supporting the view that the two enzymes are regulated by fundamentally different mechanisms. Using the A. thaliana dek1‐3 complementation assay, we show that four conserved amino acid residues of two Ca2+‐binding sites in the CysPc domain of classical calpains are conserved in land plants and functionally essential in A. thaliana DEK1.  相似文献   
22.
Melioidosis is a severe infectious disease that is endemic in Southeast Asia and Northern Australia. Burkholderia pseudomallei, the causative agent of this disease, has developed resistance to an increasing list of antibiotics, demanding a search for novel agents. Lactoferricin and lactoferrampin are two antimicrobial domains of lactoferrin with a broad spectrum of antimicrobial activity. A hybrid peptide (LFchimera) containing lactoferrampin (LFampin265–284) and a part of lactoferricin (LFcin17–30) has strikingly higher antimicrobial activities compared to the individual peptides. In this study, the antimicrobial activities of this chimeric construct (LFchimera1), as well as of another one containing LFcin17–30 and LFampin268–284, a shorter fragment of LFampin265–284 (LFchimera2), and the constituent peptides were tested against 7 isolates of B. pseudomallei and compared to the preferential antibiotic ceftazidime (CAZ). All isolates including B. pseudomallei 979b shown to be resistant to CAZ, at a density of 105 CFU/ml, could be killed by 5–10 μM of LFchimera1 within 2 h, while the other peptides as well as the antibiotic CAZ only inhibited the B. pseudomallei strains resulting in an overgrowth in 24 h. These data indicate that LFchimera1 could be considered for development of therapeutic agents against B. pseudomallei.  相似文献   
23.
24.
A distinctive early Miocene-divergent lineage of Old world racer snakes is described as a new genus and species based on three specimens collected from the western Indian state of Gujarat. Wallaceophis gen. et. gujaratenesis sp. nov. is a members of a clade of old world racers. The monotypic genus represents a distinct lineage among old world racers is recovered as a sister taxa to Lytorhynchus based on ~3047bp of combined nuclear (cmos) and mitochondrial molecular data (cytb, ND4, 12s, 16s). The snake is distinct morphologically in having a unique dorsal scale reduction formula not reported from any known colubrid snake genus. Uncorrected pairwise sequence divergence for nuclear gene cmos between Wallaceophis gen. et. gujaratenesis sp. nov. other members of the clade containing old world racers and whip snake is 21–36%.  相似文献   
25.
Pemphigus is an autoimmune disease in which IgG auto-antibodies (auto-ab) against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 cause loss of epidermal keratinocyte adhesion. Aim of this study was to investigate cytokines derived from antigen-presenting cells (APC) and their relation to CD4+ T cell subpopulations and to the auto-ab response in pemphigus. In this regard, patients with pemphigus were compared to patients with myasthenia gravis (MG), an unrelated auto-ab–mediated autoimmune disease, and healthy controls. In pemphigus and MG, the plasma concentrations of the APC-derived immunomodulatory cytokine IL-27 were highly increased. Strikingly, IL-27 strongly correlated with Dsg-specific IgG auto-ab titers. T helper (Th) 17 cells were augmented in both pemphigus and MG patients while T follicular helper (Tfh) cells, which are essential in providing B cell help, were increased only in pemphigus along with increasing plasma concentrations of IL-21, a cytokine produced by Th17 and Tfh cells. Moreover, we could detect Dsg3-specific autoreactive T cells producing IL-21 upon ex vivo stimulation with Dsg3. These findings suggest that IL-27 and IL-21-producing T cells, are involved in the pathogenesis of pemphigus. The further characterization of IL-21-producing T cells and of the role of IL-27 will lead to a more defined understanding of the auto-ab response in pemphigus.  相似文献   
26.
Investigating animal energy expenditure across space and time may provide more detailed insight into how animals interact with their environment. This insight should improve our understanding of how changes in the environment affect animal energy budgets and is particularly relevant for animals living near or within human altered environments where habitat change can occur rapidly. We modeled fisher (Pekania pennanti) energy expenditure within their home ranges and investigated the potential environmental and spatial drivers of the predicted spatial patterns. As a proxy for energy expenditure we used overall dynamic body acceleration (ODBA) that we quantified from tri-axial accelerometer data during the active phases of 12 individuals. We used a generalized additive model (GAM) to investigate the spatial distribution of ODBA by associating the acceleration data to the animals'' GPS-recorded locations. We related the spatial patterns of ODBA to the utilization distributions and habitat suitability estimates across individuals. The ODBA of fishers appears highly structured in space and was related to individual utilization distribution and habitat suitability estimates. However, we were not able to predict ODBA using the environmental data we selected. Our results suggest an unexpected complexity in the space use of animals that was only captured partially by re-location data-based concepts of home range and habitat suitability. We suggest future studies recognize the limits of ODBA that arise from the fact that acceleration is often collected at much finer spatio-temporal scales than the environmental data and that ODBA lacks a behavioral correspondence. Overcoming these limits would improve the interpretation of energy expenditure in relation to the environment.  相似文献   
27.
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall.  相似文献   
28.
29.
Copper oxide nanomaterials were synthesized by a facile sustainable biological method using two plant species (Zanthoxylum armatum DC. and Berberis lycium Royle ). The formation of materials was confirmed by FT‐IR, ATR, UV‐visible, XRD, TEM, SEM, EDX, TGA and PL. The antibacterial activity was evaluated by agar well diffusion method to ascertain the efficacy of plant species extract and extract derived copper oxide nanomaterials against six Gram‐positive bacteria namely Staphylococcus aureus, Streptococcus mutans, Streptococcus pyogenes, Corynebacterium diphtheriae, Corynebacterium xerosis, Bacillus cereus and four Gram‐negative bacteria such as Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris against the standard drug, Ciprofloxacin for Gram‐positive and Gentamicin for Gram‐negative bacteria, respectively. In both cases, copper oxide nanomaterials were found to be sensitive in all the bacterial species. Sensitivity of copper oxide nanomaterials shows an be higher as compared to plant species extract against different bacteria. Scavenging activity of plant extracts along with nanomaterials have been accessed using previously reported protocols employing ascorbic acid as standard. Scavenging activity of copper oxide nanomaterials shows an increase with increase in concentration. The biological activity (bactericidal and scavenging efficiency) of plant derived copper oxide nanomaterials revealed that these materials can be used as potent antimicrobial agent and DPPH scavengers in industrial as well as pharmacological fields.  相似文献   
30.
In February 2018, the Melanoma Research Foundation and the Moffitt Cancer Center hosted the Second Summit on Melanoma Central Nervous System (CNS) Metastases in Tampa, Florida. In this white paper, we outline the current status of basic science, translational, and clinical research into melanoma brain metastasis development and therapeutic management. We further outline the important challenges that remain for the field and the critical barriers that need to be overcome for continued progress to be made in this clinically difficult area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号