首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   906篇
  免费   40篇
  国内免费   2篇
  2023年   5篇
  2022年   26篇
  2021年   47篇
  2020年   32篇
  2019年   51篇
  2018年   41篇
  2017年   26篇
  2016年   30篇
  2015年   38篇
  2014年   49篇
  2013年   60篇
  2012年   66篇
  2011年   60篇
  2010年   40篇
  2009年   27篇
  2008年   48篇
  2007年   43篇
  2006年   39篇
  2005年   50篇
  2004年   34篇
  2003年   31篇
  2002年   22篇
  2001年   14篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1967年   4篇
  1966年   1篇
  1933年   1篇
  1932年   1篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
11.
12.
Energy consumption and CO2 emissions have been increasing continuously over the past few decades in China and there is a pressing need to replace the fossil fuel‐based economy with an efficient low‐carbon system, tailor‐made to future requirements. China is starting an energy transition with the aim of building an energy system for the future. China has made tremendous progress in increasing the amount of renewable energy and reducing the cost of renewable energy over the last 20 years. According to the 14th 5 year plan, China aims to incorporate 20% of renewable energy to the primary energy mix and attain 27% reduction in CO2 emissions. Bioenergy crops constitute a significant proportion of biomass‐based bioenergy and have recently been promoted by the Chinese Government to help overcome food and fuel conflict. Steps are being taken to promote bioenergy crops on marginal lands in China, and various regions across the country with soil marginality have been evaluated for bioenergy crop cultivation. The present paper reviews the status of bioenergy in China and the potential status of marginal lands from different regions of China. It also elaborates on some of the policies, subsidies and incentives allocated by the Chinese Government for the promotion of biomass‐based energy. Land management and plant improvement strategies were discussed, which are effective in making marginal lands suitable for bioenergy crop cultivation. Managing planting strategies, intercropping and crop rotation are effective management practices used in China for the utilization of marginal lands. A national investigation is desirable for creating an inventory of technical and economic potential of biomass feedstocks that could be planted on marginal lands. This would assist with highlighting the pros and cons of using marginal lands for bioenergy production and effective policy making.  相似文献   
13.
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.  相似文献   
14.
In the spectrophotometric assay of multicomponent systems involved in drug degradation studies, some minor or unknown degradation products may be present. These products may interfere in the assay and thus invalidate the results due to their absorption in the range of analytical wavelengths. This interference may be eliminated by the application of an appropriate correction procedure to obtain reliable data for kinetic treatment. The present study is based on the application of linear and non-linear irrelevant absorption corrections in the multicomponent spectrophotometric assay of riboflavin and formylmethylflavin during the photolysis and hydrolysis studies. The correction procedures take into account the interference caused by minor or unknown products and have shown considerable improvement in the assay data in terms of the molar balance. The treatment of the corrected data has led to more accurate kinetic results in degradation studies.  相似文献   
15.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   
16.

Introduction

C-reactive protein (CRP) levels are associated with cardiovascular disease and systemic inflammation. We assessed whether CRP-associated loci were associated with serum CRP and retinal markers of microvascular disease, in Asian populations.

Methods

Genome-wide association analysis (GWAS) for serum CRP was performed in East-Asian Chinese (N = 2,434) and Malays (N = 2,542) and South-Asian Indians (N = 2,538) from Singapore. Leveraging on GWAS data, we assessed, in silico, association levels among the Singaporean datasets for 22 recently identified CRP-associated loci. At loci where directional inconsistencies were observed, quantification of inter-ethnic linkage disequilibrium (LD) difference was determined. Next, we assessed association for a variant at CRP and retinal vessel traits [central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE)] in a total of 24,132 subjects of East-Asian, South-Asian and European ancestry.

Results

Serum CRP was associated with SNPs in/near APOE, CRP, HNF1A and LEPR (p-values ≤4.7×10−8) after meta-analysis of Singaporean populations. Using a candidate-SNP approach, we further replicated SNPs at 4 additional loci that had been recently identified to be associated with serum CRP (IL6R, GCKR, IL6 and IL1F10) (p-values ≤0.009), in the Singaporean datasets. SNPs from these 8 loci explained 4.05% of variance in serum CRP. Two SNPs (rs2847281 and rs6901250) were detected to be significant (p-value ≤0.036) but with opposite effect directions in the Singaporean populations as compared to original European studies. At these loci we did not detect significant inter-population LD differences. We further did not observe a significant association between CRP variant and CRVE or CRAE levels after meta-analysis of all Singaporean and European datasets (p-value >0.058).

Conclusions

Common variants associated with serum CRP, first detected in primarily European studies, are also associated with CRP levels in East-Asian and South-Asian populations. We did not find a causal link between CRP and retinal measures of microvascular disease.  相似文献   
17.
Salt stress is one of the major abiotic stress in plants. However, traditional approaches are not always efficient in conferring salt tolerance. Experiments were conducted to understand the role of Trichoderma spp. (T. harzianum and T. viride) in growth, chlorophyll (Chl) synthesis, and proline accumulation of C. pepo exposed to salinity stress. There were three salt stress (50, 100, and 150 mM NaCl) lavels and three different Trichoderma inoculation viz. T. harzianum, T. viride, and T. harzianum + T. viride. Salt stress significantly declined the growth in terms of the shoot and root lengths; however, it was improved by the inoculation of Trichoderma spp. C. pepo inoculated with Trichoderma exhibited increased synthesis of pigments like chl a, chl b, carotenoids, and anthocyanins under normal conditions. It was interesting to observe that such positive effects were maintained under salt-stressed conditions, as reflected by the amelioration of the salinity-mediated decline in growth, physiology and antioxidant defense. The inoculation of Trichoderma spp. enhanced the synthesis of proline, glutathione, proteins and increased the relative water content. In addition, Trichoderma inoculation increased membrane stability and reduced the generation of hydrogen peroxide. Therefore, Trichoderma spp. can be exploited either individually or in combination to enhance the growth and physiology of C. pepo under saline conditions.  相似文献   
18.
Leaf curl and yellow vein mosaic viral disease is the major constraint on okra (Abelmoschus esculentus L.) production in India. Amplified fragment sequence of DNA-β showed highest similarity of 91.7% with Bhendi yellow vein mosaic virus-Tamil Nadu (AJ308425, NC_003405) and lowest similarity of 48.5% with OKLCV (NC_004093), whereas coat protein specific amplified sequence showed highest homology with isolate of Madurai, Haryana, Ludhiana and lowest homology of 92% with Mesta yellow vein mosaic Bahraich virus (MYVMBV) (EU360303). The results obtained in the present study confirm that both the viral diseases of okra reported in southern India are caused by a begomovirus associated with DNA-β in which the plants show leaf curl symptoms and never develops yellow vein mosaic and those plants which show yellow vein mosaic, never develops leaf curl symptoms even in the same rows and field. The okra leaf curl is an emerging virus disease in India.  相似文献   
19.
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F.  相似文献   
20.
DEK1, the single calpain of land plants, is a member of the ancient membrane bound TML–CysPc–C2L calpain family that dates back 1.5 billion years. Here we show that the CysPc–C2L domains of land plant calpains form a separate sub‐clade in the DEK1 clade of the phylogenetic tree of plants. The charophycean alga Mesostigma viride DEK1‐like gene is clearly divergent from those in land plants, suggesting that a major evolutionary shift in DEK1 occurred during the transition to land plants. Based on genetic complementation of the Arabidopsis thaliana dek1‐3 mutant using CysPc–C2L domains of various origins, we show that these two domains have been functionally conserved within land plants for at least 450 million years. This conclusion is based on the observation that the CysPc–C2L domains of DEK1 from the moss Physcomitrella patens complements the A. thaliana dek1‐3 mutant phenotype. In contrast, neither the CysPc–C2L domains from M. viride nor chimeric animal–plant calpains complement this mutant. Co‐evolution analysis identified differences in the interactions between the CysPc–C2L residues of DEK1 and classical calpains, supporting the view that the two enzymes are regulated by fundamentally different mechanisms. Using the A. thaliana dek1‐3 complementation assay, we show that four conserved amino acid residues of two Ca2+‐binding sites in the CysPc domain of classical calpains are conserved in land plants and functionally essential in A. thaliana DEK1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号