首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   30篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   9篇
  2003年   4篇
  2002年   9篇
  2001年   6篇
  2000年   9篇
  1999年   12篇
  1997年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1971年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
91.
Lipid components of a glycolipid, formerly designated as spot A, from the cells of Selenomonas ruminantium were investigated. The basic structure of this material had been previously shown to be β-glucosaminyl-l,6-glucosamine. The major component of O- and N-acyl side chains was β-OH C13:0 acid when the cells were grown with added valerate. Approximately 85 % of the total amide linked fatty acids was this compound. A considerable amount of C13:2 acid was also present as a component of O-acyl fatty acids. When the cells were grown in a glucose medium containing caproate, the major fatty acid component of the spot A compound was β-OH myristic and β-OH C13:0: acids. 14C-Valerate or 14C-caproate, supplemented to the glucose medium, was incorporated into O- and N-acyl linked fatty acid moieties of the spot A compound. It was also shown that the spot A compound was the lipid A component of lipopolysaccharides of this organism.  相似文献   
92.
93.
94.

Background

Bone marrow-derived fibrocytes reportedly play important roles in the pathogenesis of idiopathic pulmonary fibrosis. Pirfenidone is an anti-fibrotic agent; however, its effects on fibrocytes have not been investigated. The aim of this study was to investigate whether pirfenidone inhibits fibrocyte pool size in the lungs of bleomycin-treated mice.

Methods

Bleomycin (100 mg/kg) was infused with osmotic pumps into C57BL/6 mice, and pirfenidone (300 mg/kg/day) was orally administered daily for 2 wk. The lungs were removed, and single-cell suspensions were subjected to fluorescence-activated cell sorter (FACS) analysis to detect fibrocytes, which were defined as CD45 and collagen-I double-positive cells. Immunohistochemistry was performed on the lung specimens to quantify fibrocytes. Chemokines in the lung digests were measured with enzyme-linked immunosorbent assay. The effect of pirfenidone on alveolar macrophages was evaluated with bronchoalveolar lavage (BAL). In a therapeutic setting, pirfenidone administration was initiated 10 days after bleomycin treatment. For chemotaxis assay, lung fibrocytes were isolated with immunomagnetic selection (CD45-positive mesenchymal cells) after culture and allowed to migrate toward chemokines in the presence or absence of pirfenidone. Moreover, the effect of pirfenidone on the expression of chemokine receptors on fibrocytes was evaluated.

Results

Pirfenidone significantly ameliorated bleomycin-induced pulmonary fibrosis as assessed with quantitative histology and collagen measurement. Fibrocyte pool size in bleomycin-treated mice lungs was attenuated from 26.5% to 13.7% by pirfenidone on FACS analysis. This outcome was also observed in a therapeutic setting. Immunohistochemistry revealed that fibrocytes were significantly decreased by pirfenidone administration compared with those in bleomycin-treated mice (P = 0.0097). Increased chemokine (CC motif) ligand-2 (CCL2) and CCL12 production in bleomycin-treated mouse lungs was significantly attenuated by pirfenidone (P = 0.0003 and P < 0.0001, respectively). Pirfenidone also attenuated macrophage counts stimulated by bleomycin in BAL fluid. Fibrocyte migration toward CCL2 and chemokine (CC motif) receptor-2 expression on fibrocytes was significantly inhibited by pirfenidone in vitro.

Conclusions

Pirfenidone attenuated the fibrocyte pool size in bleomycin-treated mouse lungs via attenuation of CCL2 and CCL12 production in vivo, and fibrocyte migration was inhibited by pirfenidone in vitro. Fibrocyte inhibition is considered a mechanism of anti-fibrotic action of pirfenidone.  相似文献   
95.
A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.  相似文献   
96.
Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC12 cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H2O2, catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.  相似文献   
97.

Two species of microcotylid monogeneans, Microcotyle caudata Goto, 1894 and Microcotyle sebastisci Yamaguti, 1958, have been reported from fishes of the Sebastes inermis species complex and Sebastiscus marmoratus (Cuvier) (Scorpaeniformes: Sebastidae). So far, these parasite species have been distinguished by the size of the eggs and the number of testes, but based on morphological evidence including re-examination of the type-specimens and topotypes and molecular analysis, we consider M. sebastisci to be a junior synonym of M. caudata. As a result, M. caudata exhibits a wide host range, seven species from three genera and two families. A new species, Microcotyle kasago n. sp., is described based on material from S. marmoratus and differentiated from other congeners by means of morphological and molecular analysis.

  相似文献   
98.
Globular adiponectin (gAd), a truncated form of adipocyte-derived cytokine, stimulates RAW 264 cells to produce reactive oxygen species (ROS), which trigger an apoptotic cascade. In this study, we investigated the generation of intracellular and mitochondrial ROS in gAd-stimulated RAW 264 cells. Treatment with gAd efficiently induced the generation of intracellular and mitochondrial ROS, as detected by dichlorodihydrofluorescein diacetate and MitoSOX fluorescence, respectively. Furthermore, gAd treatment significantly increased 8-oxoguanine, a specific indicator of oxidative DNA damage. The transfection of RAW 264 cells with iNOS- and gp91phox-specific small interfering RNA reduced markedly the generation of intracellular, but not mitochondrial, ROS. Quantitative PCR revealed that the expression ratio of Bcl-2 to Bax was reduced in a time-dependent manner in gAd-treated RAW 264 cells. The overexpression of Bcl-2 markedly inhibited gAd-induced apoptosis in RAW 264 cells and also reduced both the intracellular and the mitochondrial ROS generation induced by gAd treatment. Moreover, the overexpression of Bcl-2 significantly suppressed gAd-induced NO secretion and NOS activity. In addition, the inhibition of NOS activity partially reduced the oxidative DNA damage induced by gAd. Taken together, these results demonstrate that the gAd-induced apoptotic pathway acting via ROS/RNS generation involves Bcl-2.  相似文献   
99.
The auxins, plant hormones, play a crucial role in many aspects of plant development by regulating cell division, elongation and differentiation. Toyocamycin, a nucleoside-type antibiotic, was identified as auxin signaling inhibitor in a screen of microbial extracts for inhibition of the auxin-inducible reporter gene assay. Toyocamycin specifically inhibited auxin-responsive gene expression, but did not affect other hormone-inducible gene expression. Toyocamycin also blocked auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCF(TIR1) ubiquitin-proteasome pathway without inhibiting proteolytic activity of proteasome. Furthermore, toyocamycin inhibited auxin-induced lateral root formation and epinastic growth of cotyledon in the Arabidopsis thaliana plant. This evidence suggested that toyocamycin would act on the ubiquitination process regulated by SCF(TIR1) machineries. To address the structural requirements for the specific activity of toyocamycin on auxin signaling, the structure-activity relationships of nine toyocamycin-related compounds, including sangivamycin and tubercidin, were investigated.  相似文献   
100.
Carotovoricin Er (CtvEr), which is produced by a plant soft rot disease causative agent, Erwinia carotovora subsp. carotovora Er, is a high-molecular-weight bacteriocin showing Myoviridae phage-tail-like morphology with contractile sheath and plural tail fibers. We determined the complete nucleotide sequences of CtvEr genes on the E. carotovora Er chromosome and report that CtvEr genes consist of lysis cassette, major and minor structural protein gene clusters. Four promoters were identified. The lysis gene cassette, which is composed of the genes for lysis enzyme and holin, was also identified and characterized. The nucleotide sequences and organization of the genes for CtvCGE, which is produced by E. carotovora strain CGE234-M403 with the morphology similar to CtvEr, were also determined and compared to that of CtvEr, and it was found that CtvCGE is almost identical to CtvEr except for tail fibers which are involved in the killing spectra of both bacteriocins. We also explain that the gene organization and the deduced amino acid sequences of both carotovoricins are very close to those of prophage, which is lysogenized in the chromosome on Salmonella enterica serovar Typhi CT18. These findings strongly suggest that Ctv evolved as a phage tail-like bacteriocin from a common ancestor with Salmonella typhi prophage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号