首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   25篇
  国内免费   1篇
  628篇
  2022年   13篇
  2021年   14篇
  2020年   19篇
  2019年   15篇
  2018年   26篇
  2017年   12篇
  2016年   24篇
  2015年   33篇
  2014年   43篇
  2013年   63篇
  2012年   45篇
  2011年   48篇
  2010年   34篇
  2009年   19篇
  2008年   34篇
  2007年   27篇
  2006年   26篇
  2005年   22篇
  2004年   12篇
  2003年   15篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1998年   2篇
  1997年   4篇
  1994年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
  1972年   3篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
  1966年   2篇
  1906年   1篇
排序方式: 共有628条查询结果,搜索用时 0 毫秒
71.
The understanding of integral membrane protein (IMP) structure and function is hampered by the difficulty of handling these proteins. Aqueous solubilization, necessary for many types of biophysical analysis, generally requires a detergent to shield the large lipophilic surfaces of native IMPs. Many proteins remain difficult to study owing to a lack of suitable detergents. We introduce a class of amphiphiles, each built around a central quaternary carbon atom derived from neopentyl glycol, with hydrophilic groups derived from maltose. Representatives of this maltose-neopentyl glycol (MNG) amphiphile family show favorable behavior relative to conventional detergents, as manifested in multiple membrane protein systems, leading to enhanced structural stability and successful crystallization. MNG amphiphiles are promising tools for membrane protein science because of the ease with which they may be prepared and the facility with which their structures may be varied.  相似文献   
72.
Cell-penetrating peptides (CPPs) may have impli-cations in biomedical sciences by improving the delivery of a wide variety of drugs through the membrane barrier. CPPs are generally taken up by endocytotic pathways, and vesicular encapsulation is a limiting factor in the area of intracellular targeting. A novel, cationic cysteine-rich CPP, CyLoP-1, has been developed exhibiting distinguished diffused cytosolic distribution along with endosomal uptake at low micromolar concentrations. Comparative uptake analysis with known CPPs showed CyLoP-1 as a promising delivery vector to access the cytosol in a variety of cell types. In addition to the positively charged residues, the presence of cysteines and tryptophans proved to be essential to maintain its functionality. Also, the oxidation status of the cysteines played an important role for the uptake efficiency of CyLoP-1, with the disulfide-containing form being more effective. The distinct feature of CyLoP-1 to enter the cytosol was further explored by the covalent attachment of cargoes of different nature and sizes. In particular, induction of caspase-3 activity (indicating apoptosis) by a CyLoP-1-SmacN7 conjugate proved successful delivery of the pro-apoptotic cargo to its site of action in the cytosol. Efficient intracellular delivery into the entire cytosol already at low micromolar concentrations makes CyLoP-1 a promising candidate for cytosolic delivery of cargoes of small sizes. Thus, this peptide might prove to be useful for efficient transmembrane delivery of agents directed to cytosolic targets.  相似文献   
73.
Immuno-proteasome is thought to be responsible for the processing of intracellular antigens and is induced when cells are treated with the inflammatory cytokines promoting cellular immunity. We tested the possibility that immuno-proteasome can be up-regulated in renal cells exposed to a long-lasting ischemia and inflammation in an experimental model of two-kidney, one-clip renovascular hypertension in the rat. Western blotting showed that immuno-proteasome subunit, LMP7, was up-regulated in the clipped ischemic kidney that was atrophic, but not in the contralateral unclipped kidney that underwent compensatory hypertrophy. Immunohistochemical analysis revealed that LMP7 was highly expressed in cortical epithelial and endothelial cells of the ischemic kidney. Surprisingly, the second immuno-subunit, LMP2, was almost undetectable, indicating that renal ischemia may induce exclusively the LMP7 subunit. We also found that renal ischemia neither reduced the SDS-stimulated proteasomal activity nor affected a high level of the PA28 activator. Thus, the results provide evidence that LMP7 immuno-subunit is induced in renal cells exposed to a long-lasting renal ischemia and inflammation, and that there is a direct link between LMP induction and renal atrophy. This opens an opportunity to study a role for LMP-containing proteasomes in the kidneys and other organs undergoing reduction in mass in diseases accompanied by a long-lasting ischemia and inflammatory responses.  相似文献   
74.
Acetylcholinesterase (AChE) is a widely spread enzyme playing a very important role in nerve signal transmission. As AChE controls key processes, its inhibition leads to the very fast death of an organism, including humans. However, when this feature is to be used for killing of unwanted organisms (i.e. mosquitoes), one is faced with the question - how much do AChEs differ between species and what are the differences? Here, a theoretical point of view was utilized to identify the structural basis for such differences. The various primary and tertiary alignments show that AChEs are very evolutionary conserved enzymes and this fact could lead to difficulties, for example, in the search for inhibitors specific for a particular species.  相似文献   
75.
The osmoregulated betaine transporter BetP is a stable trimer. Structural studies have shown that individual protomers can adopt distinct transport conformations, implying a functional role for the trimeric state in transport, although the role of trimerization in regulation is not yet understood. We designed putative monomeric mutants by molecular-dynamics simulations and in silico alanine-scanning mutagenesis. Several mutants including BetP-W101A/T351A were monomeric in detergent as well as in the membrane, as shown by blue native gel electrophoresis, crosslinking and electron microscopy. This monomeric form retains the ability to accumulate betaine, but is no longer regulated by hyperosmotic shock.  相似文献   
76.
Functional magnetic resonance imaging (fMRI) at high magnetic fields has made it possible to investigate the columnar organization of the human brain in vivo with high degrees of accuracy and sensitivity. Until now, these results have been limited to the organization principles of early visual cortex (V1). While the middle temporal area (MT) has been the first identified extra-striate visual area shown to exhibit a columnar organization in monkeys, evidence of MT's columnar response properties and topographic layout in humans has remained elusive. Research using various approaches suggests similar response properties as in monkeys but failed to provide direct evidence for direction or axis of motion selectivity in human area MT. By combining state of the art pulse sequence design, high spatial resolution in all three dimensions (0.8 mm isotropic), optimized coil design, ultrahigh field magnets (7 Tesla) and novel high resolution cortical grid sampling analysis tools, we provide the first direct evidence for large-scale axis of motion selective feature organization in human area MT closely matching predictions from topographic columnar-level simulations.  相似文献   
77.
We all possess T cells with autoaggressive potential. Knowledge of their regulation is crucial for elucidating pathogenetic pathways and designing effective treatments for autoimmune diseases. A novel mechanism of T-cell silencing--in an autoimmune model--has recently been identified and is termed "epitope theft". The "thieves" are naive CD8+ T cells, which apparently "steal" MHC-class-I-antigen complexes from antigen-presenting cells (APCs). The deprived APCs can no longer activate other potentially pathogenic naive CD8+ T cells that are specific for the same epitope. This phenomenon is a previously unrecognized antigen-specific mode of protection against autoimmunity.  相似文献   
78.
79.
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric, IP(3)-gated channels in endoplasmic reticulum membranes that govern the release of Ca(2+) from this organelle. In response to activation of certain G protein-coupled receptors that persistently elevate IP(3) concentration, IP(3) receptors are ubiquitinated and degraded by the ubiquitin-proteasome pathway. IP(3) receptor ubiquitination is mediated by the ubiquitin-conjugating enzyme, (mam)Ubc7, a component of the endoplasmic reticulum-associated degradation pathway. However, the mechanism by which ubiquitinated IP(3) receptors are transferred to the proteasome is not known. Here, we examine this process and show in several mammalian cell types that the ATPase p97 associates with IP(3) receptors in response to hormonal stimuli that induce IP(3) receptor ubiquitination. To examine the functional relevance of the p97 interaction with IP(3) receptors, we stably and specifically reduced p97 protein levels by 62 +/- 3% in Rat-1 fibroblasts using RNA interference. In these cells, endothelin-1-induced IP(3) receptor degradation was markedly retarded and the accumulation of ubiquitinated IP(3) receptors was markedly enhanced. These effects were reversed by expression of exogenous p97. In addition, Ufd1 and Npl4, which complex with p97, also associated with IP(3) receptors upon hormonal stimulation. We conclude that the p97-Ufd1-Npl4 complex couples ubiquitinated IP(3) receptors to proteasomal degradation and, thus, plays a key role in IP(3) receptor processing. These data also establish that the p97-Ufd1-Npl4 complex mediates endoplasmic reticulum-associated degradation in mammalian cells.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号