首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   4篇
  52篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2002年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
31.
TAp73, a homologous of tumor suppressor p53, regulates apoptosis in a p53-independent manner and its suppressive as well as stimulatory role in promoting angiogenesis has been reported. It exists in multiple isoforms which varies structurally in their N-terminus and C-terminus region and crucial interplay among them guides the decision of cell survival and death. As molecular chaperones control both stability and degradation of TAp73, selective regulation of p73 isoforms has implication upon developing new therapeutic for hypoxic tumor. We have discovered that under DNA damage carboxy terminus Hsp70 interacting protein (CHIP's) antiapoptotic function is displayed via its E3 ligase activity that inhibits exclusively TAp73α-mediated apoptosis in cancer cell. The decrease in TAp73α level by CHIP as it is supported by increased ubiquitination pattern is reverted back by sh-CHIP. Further, the transactivation of p53-downstream apoptotic genes BAX, PUMA and PIG3 by TAp73α is also shown to be subsequently inhibited by CHIP. The tetratricopeptide TPR-domain of CHIP in its amino-terminus interacts with the carboxy-terminus of TAp73α and ΔNp73α and as a result, U-BOX domain of CHIP in the carboxy-terminus is able to ubiquitinate TAp73α for proteasomal degradation. Due to lack of C-terminus in TAp73β, CHIP fails to interact with and degrade it. In conclusion, we have thus uncovered for the first time a novel mechanism of chaperone-assisted regulation of p73 stability as well as its apoptotic functions by CHIP that might be utilized to develop new anticancer strategies.  相似文献   
32.
A pot trial using Glomus mosseae along with EDTA (ethylenediaminetetraacetic acid) was conducted for the phytoextraction of cadmium (Cd) by celery (Apium graveolens Linn.) plants from soil artificially contaminated with Cd under glass house conditions. The experiment is a 2 × 2 × 4 factorial design with two levels of G. mosseae inoculations (G. mosseae inoculated and uninoculated), two EDTA concentrations (without and with 2.5 mmol kg?1 soil EDTA) and four Cd concentrations (0, 5, 10, and 20 mg kg?1 soil). The results indicate the formation of an effective symbiosis between G. mosseae and celery in the contaminated soil. However, an increase in Cd input level and EDTA addition showed strong phytotoxic effect on celery plants and G. mosseae, as a considerable decrease in the frequency of root colonization and spore density was noticed. However, the plants were able to withstand the stressed condition due to the benefits provided by G. mosseae through increased P accumulation, chlorophyll content, and plant growth, resulting in an increase in Cd accumulation, which was good enough for the phytoextraction purpose. Thus, celery plants inoculated with G. mosseae and later supplemented with EDTA could be an effective and potentially suitable practice for the remediation of Cd-contaminated sites.  相似文献   
33.
Curcumin, an active component of turmeric, is a well‐known antioxidant due to its reactive oxygen species (ROS) scavenging property. However, some in vitro studies have suggested that curcumin induces generation of ROS at higher doses and thus exerts pro‐oxidant effect. We demonstrate, for the first time, the dose‐dependent effects of curcumin in isoprenaline‐induced model of myocardial necrosis in rats. The animals were assigned to control, isoprenaline and three curcumin treatment groups. Curcumin (100, 200, and 400 mg/kg) and vehicle (dimethyl sulfoxide) were administrated orally for 15 days and isoprenaline (85 mg/kg, s.c.) was given to curcumin treated and isoprenaline group on 13th and 14th day, respectively. Thereafter, on 15th day, the animals were sacrificed for biochemical analysis along with histopathological and ultrastructural examination. There was an increase in glutathione, superoxide dismutase (SOD), creatine kinase‐MB (CK‐MB) and lactate dehydrogenase (LDH) levels, decrease in thiobarbituric acid reactive substances (TBARS), and preservation of myocardial architecture in the curcumin (100 and 200 mg/kg) treated groups. However, at 400 mg/kg dose there was ineffectual protection against isoprenaline‐induced myocardial damage. Instead, there was significant lipid peroxidation as evident by increased levels of TBARS (93.87 ± 9.93, p < 0.0001) and decrease in CK‐MB (206.32 ± 13.54, p < 0.0001) and LDH (134.26 ± 9.13, p < 0.01) as compared to the two lower doses. Hence, it can be concluded that curcumin augments endogenous antioxidant system at lower doses but mediates ROS induction at higher concentration leading to myocardial damage. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
34.
35.
J S Sethi  R K Tanwar 《Acta anatomica》1989,135(4):323-329
The present study deals with the detailed distribution of acid phosphatase (AcP) and simple esterase (SE) in different layers of the neocortex and hippocampal formation of the mouse brain. The neurons, in general, had moderate to intense enzyme activity for AcP and mild to moderate activity for SE. The AcP activity dominated in the neuronal population as compared to the neuropil; the neuropil stained mildly for SE. The large pyramidal cells in the neocortex and cornu ammonis, and the granular cell layer of the gyrus dentatus, demonstrated strong enzyme activity both in AcP and SE preparations. The role of AcP and SE has been discussed in relation to various structures of the neocortex and hippocampal formation.  相似文献   
36.
Guggulsterone, a hypolipidemic natural agent, is produced in resin canals of the plant Commiphora wightii. In this study, the efficacy of different plant growth regulators was evaluated for optimizing its production. Morphactin was found to be effective in enhancing the accumulation of guggulsterones in callus cultures. Maximum callus growth was recorded on medium containing morphactin (0.1 mg l−1) and 2iP (2.5 mg l−1), whereas maximum guggulsterone production occurred when the calluses were cultured on medium containing 0.1 mg l−1 morphactin and 1.0 mg l−1 2iP. Morphactin and 2iP interacted significantly to enhance the callus growth and guggulsterone production by about 8-folds in one-year-old cultures. However, the effect of morphactin on callus growth and guggulsterone production was not uniform over the levels of 2iP tested. Such an effect of morphactin has never been reported on the production of secondary metabolites.  相似文献   
37.
In the present report, Aegle marmelos leaf powder was used to synthesize copper nanoparticles (CuNPs) using a simple and cost-effective method. A. marmelos leaves have various medicinal uses including for the treatment of diarrhoea, constipation, diabetes, cholera, skin diseases, earache, blood purification, heart problems, and so on. The plant biomolecules induce the reduction of Cu2+ ions to CuNPs and also act as a capping and stabilizing agent. The formation of CuNPs was confirmed using photoluminescence (PL) excitation and emission spectra on a Shimadzu RF-5301 PC spectrofluorophotometer and the absorbance spectra of a UV–visible spectrophotometer at different stages during the synthesis process. In addition, other properties of synthesized CuNPs were also investigated using X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy techniques. The average size of the synthesized CuNPs was in the range 20–40 nm. Furthermore, the synthesized NPs were also considered for an antimicrobial study against Gram-positive Staphylococcus aureus and Proteus, and Gram-negative Escherichia coli and Salmonella spp. using the agar well diffusion method. The zone of inhibition against the Gram-positive bacteria was greater than the zone of inhibition against the Gram-negative bacteria. These investigation results suggest that synthesized NPs are promising nanomaterials for use as antimicrobial agents.  相似文献   
38.
Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/β-catenin and PTEN/AKT signaling in the etiology and/or progression of this disease is currently unclear. In this report we show that mice with a gain-of-function mutation in β-catenin that leads to dysregulated nuclear accumulation of β-catenin expression in the ovarian surface epithelium (OSE) cells develop indolent, undifferentiated tumors with both mesenchymal and epithelial characteristics. Combining dysregulated β-catenin with homozygous deletion of PTEN in the OSE resulted in development of significantly more aggressive tumors, which was correlated with inhibition of p53 expression and cellular senescence. Induced expression of both mTOR kinase, a master regulator of proliferation, and phosphorylation of its downstream target, S6Kinase was also observed in both the indolent and aggressive mouse tumors, as well as in human OEA with nuclear β-catenin accumulation. Ectopic allotransplants of the mouse ovarian tumor cells with a gain-of-function mutation in β-catenin and PTEN deletion developed into tumors with OEA histology, the growth of which were significantly inhibited by oral rapamycin treatment. These studies demonstrate that rapamycin might be an effective therapeutic for human ovarian endometrioid patients with dysregulated Wnt/β-catenin and Pten/PI3K signaling.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号