首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   20篇
  2023年   1篇
  2022年   3篇
  2021年   14篇
  2020年   3篇
  2019年   10篇
  2018年   4篇
  2017年   6篇
  2016年   2篇
  2015年   12篇
  2014年   14篇
  2013年   16篇
  2012年   19篇
  2011年   30篇
  2010年   18篇
  2009年   11篇
  2008年   16篇
  2007年   12篇
  2006年   8篇
  2005年   12篇
  2004年   11篇
  2003年   7篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   3篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1982年   2篇
排序方式: 共有280条查询结果,搜索用时 640 毫秒
81.
Menadione sodium bisulphite (MSB) increased the growth of tomato plants and alfalfa callus and stimulated rooting of mungbean cuttings. Investigations into its effect on auxin metabolism resulted in decreased activities of the enzymes involved in IAA oxidation in tomato plants. The levels of IAA were increased by about 3 to 4 fold following application of MSB to tomato, cucumber, corn and capsicum plants.NCL Communication No. 3358.  相似文献   
82.
83.
Neuroprotective potential of epigallo catechin-3-gallate in PC-12 cells   总被引:1,自引:0,他引:1  
Oxidative stress is a major player in aging and neurodegenerative disorders. Macromolecular damage occurs as a result of oxidative stress that affects the mitochondria. Mitochondrial damage leads to cell death by apoptosis or necrosis. EGCG is a tea polyphenol that protects the cells against oxidative stress. Neuroprotective potential of EGCG was tested against H2O2 induced oxidative stress in PC-12 cells. PC-12 cells were grown in tissue culture flasks. Oxidative stress was induced by adding H2O2 to the cells. EGCG was also added and the cell death was assessed using MTT assay. Oxidative stress was assessed by protein carbonyl and thiol status. Mitochondrial membrane potential was studied using JC-1 staining. TNF-α levels were assessed using ELISA. H2O2 increased the protein carbonyl content and reduced the thiol status in the PC-12 cells. Cell death was increased in H2O2 treated cells as shown by MTT assay. Mitochondrial membrane potential was also decreased along with increase in TNF-α level in H2O2 treated cells. EGCG brought about an increase in the cellular thiol status and decreased the protein carbonyl content in the PC-12 cells. Cell death was attenuated by EGCG treatment along with an increase in mitochondrial membrane potential and decrease in TNF-α level. EGCG conferred its antioxidant potential to PC-12 cells as evident by decreased protein damage. Mitochondrial membrane potential was improved along with a decrement in the cell death in PC-12 cells. EGCG acts as a good neutraceutical antioxidant to render neuroprotectivity to PC-12 cells.  相似文献   
84.
Compacts containing selected bioadhesive polymers, fillers, and binders were investigated for their potential as a bioadhesive gastroretentive delivery system to deliver water soluble and water insoluble compounds in the stomach. Compacts with 90:10, 75:25, and 60:40 of polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) were evaluated for swelling, dissolution, bioadhesion, and in vitro gastric retention. Compacts containing higher PEO showed higher swelling (111.13%) and bioadhesion (0.62 ± 0.03 N/cm2), and retained their integrity and adherence onto gastric mucosa for about 9 h under in vitro conditions. In vivo gastroretentive property of compacts were evaluated in Yorkshire cross swines. Compacts containing 58% PVP, 40% PEO and 2% of water soluble or water insoluble marker compounds showed gastroadhesive and retentive properties in vivo. It is concluded that PEO in combination with PVP yields a non disintegrating type bioadhesive dosage form which is suitable for gastroretentive applications. A part of this study has been presented at the Controlled Release Society’s symposium held at Vienna, 2006.  相似文献   
85.
Dietary n-3 fatty acids (FAs) may reduce cardiovascular disease risk. We questioned whether acute administration of n-3 rich triglyceride (TG) emulsions could preserve cardiac function and decrease injury after ischemia/reperfusion (I/R) insult. We used two different experimental models: in vivo, C57BL/6 mice were exposed to acute occlusion of the left anterior descending coronary artery (LAD), and ex-vivo, C57BL/6 murine hearts were perfused using Langendorff technique (LT). In the LAD model, mice treated with n-3 TG emulsion (1.5g/kg body weight), immediately after ischemia and 1h later during reperfusion, significantly reduced infarct size and maintained cardiac function (p<0.05). In the LT model, administration of n-3 TG emulsion (300mgTG/100ml) during reperfusion significantly improved functional recovery (p<0.05). In both models, lactate dehydrogenase (LDH) levels, as a marker of injury, were significantly reduced by n-3 TG emulsion. To investigate the mechanisms by which n-3 FAs protects hearts from I/R injury, we investigated changes in key pathways linked to cardioprotection. In the ex-vivo model, we showed that n-3 FAs increased phosphorylation of AKT and GSK3β proteins (p<0.05). Acute n-3 TG emulsion treatment also increased Bcl-2 protein level and reduced an autophagy marker, Beclin-1 (p<0.05). Additionally, cardioprotection by n-3 TG emulsion was linked to changes in PPARγ protein expression (p<0.05). Rosiglitazone and p-AKT inhibitor counteracted the positive effect of n-3 TG; GSK3β inhibitor plus n-3 TG significantly inhibited LDH release. We conclude that acute n-3 TG injection during reperfusion provides cardioprotection. This may prove to be a novel acute adjunctive reperfusion therapy after treating patients with myocardial infarction.  相似文献   
86.
87.
The present study was attempted to know the growth regulation of eyestalk factors on the growth of heart in Scylla serrata using eyestalk extractions and bilateral eyestalk ablations. The bilateral eyestalk ablation led to the maximum growth indices of the heart ((H) indices) to 0.162 and 0.158 in ablated male and female, respectively, in comparison to 0.153 and 0.167 in the control male and female and 0.147 and 0.157 in injected male and female, respectively. The data have shown that the heart of male crabs grows faster than female crabs. The study has also shown that bilateral eyestalk ablation resulted in a significant increase in the heart indices in males and has least effect on the growth of the female heart. The results presented strongly support a potential role of the eyestalk factors and molting hormone regulating the growth of the heart in S. serrata.  相似文献   
88.
The identification of RAGE as a phophatidylserine receptor—in this issue of EMBO reports by He et al—adds to the range of molecules that can sense this ‘eat-me'' signal, and suggests new potential therapeutic opportunities.EMBO Rep (2011) advance online publication. doi:10.1038/embor.2011.28The recognition of apoptotic cells by phagocytes is a complex, yet highly orchestrated event. Many receptors have been identified that recognize phosphatidylserine (PS; Fig 1)—which is exposed on early apoptotic cells—leading to downstream signalling and apoptotic cell engulfment. In a paper published this month in EMBO reports, the receptor for advanced glycation end-products (RAGE) is described as a new PS receptor on alveolar macrophages that participates in the clearance of apoptotic cells (He et al, 2011).…[RAGE] is described as a new phosphatidylserine receptor on alveolar macrophages that participates in the clearance of apoptotic cellsOpen in a separate windowFigure 1Phosphatidylserine-dependent apoptotic cell recognition.Schematic of the known PS receptors and downstream signalling to Rac. Dashed lines indicate unknown signalling mechanisms. PS, phosphatidylserine; RAGE, receptor for advanced glycation end-products; sRAGE, soluble RAGE.More than 200 billion cells undergo apoptosis every day in a human body, yet few apoptotic cells are detected in healthy tissue (Ravichandran, 2010). Apoptotic cells are generated during development, as part of normal homeostatic turnover and in disease states. The efficient clearance of apoptotic cells is crucial to prevent them from becoming secondarily necrotic, thereby limiting the immune response to apoptotic cell-derived self-antigens (Green et al, 2009). Disruptions to the clearance of apoptotic cells are linked to several diseases including atherosclerosis, chronic inflammation and autoimmunity (Elliott & Ravichandran, 2010).More than 200 billion cells undergo apoptosis every day in a human body, yet few apoptotic cells are detected in healthy tissueApoptotic cell engulfment can be divided into several steps. The first is the release of ‘find-me'' signals—such as triphosphate nucleotides (ATP and UTP), sphingosine-1-phosphate (S1P), lysophosphatidylcholine (LPC) and the chemokine CX3CL1—by apoptotic cells (Ravichandran, 2010). Then, phagocytes sense the find-me signals and migrate toward the apoptotic cell. When they are in close proximity, recognition is mediated by the interaction between engulfment receptors on phagocytes and ligands, known as ‘eat-me'' signals, that are expressed on the dying cells (Ravichandran, 2010). The best-studied eat-me signal is PS, which is flipped from the inner leaflet to the outer leaflet of the plasma membrane during early apoptosis. Many receptors have been linked to the recognition of the exposed PS on apoptotic cells, and they are discussed below. The recognition of an apoptotic cell results in a downstream signalling cascade that leads to cytoskeletal rearrangement of the phagocytic membrane and subsequent engulfment of the apoptotic cell. Once the corpse is internalized, the phagocyte must process and digest the cellular contents.The exposure of PS on the outer leaflet of the membrane is the most-characteristic marker of an apoptotic cell. Phagocytes can recognize PS directly through receptors such as Bai1, TIM-4 and stabilin 2, or through soluble bridging molecules that bind to both PS and specific phagocyte receptors. For example, bridging molecules MFG-E8 and Gas6 interact with αVβ3/5 and MER on the phagocytic membrane, respectively. Other eat-me signals and the molecules that bind to them have been characterized: thrombospondin is recognized by the vitronectin receptor, calreticulin by LRP1, oxidized LDL by scavenger receptors, ICAM3 might bind to CD14 and altered sugars bind to lectins (Lauber et al, 2004). Not all receptors need to be engaged for engulfment to occur, and different cell types have different receptor-expression levels.In a paper published this month in EMBO reports, the Yamamoto team identify RAGE as a new type of PS receptor on macrophages (He et al, 2011). There are two functional forms of RAGE, an abundant full-length transmembrane form that can initiate signalling through its intracellular tail, and a soluble isoform (sRAGE) that acts as a decoy receptor. RAGE is characteristically regarded as a pro-inflammatory receptor and has a variety of ligands, including advanced glycation end-products (AGEs) and many other damage-associated molecular patterns (DAMPs; Sims et al, 2010). One ligand in particular—high-mobility group protein B1 (HMGB1)—is released by cells undergoing necrosis and has been shown to bind to RAGE and induce inflammation (Sims et al, 2010). Therefore, RAGE might function during pro-inflammatory conditions and—as proposed by He and colleagues—during the anti-inflammatory process of apoptotic cell clearance. RAGE is mainly expressed in the lungs, but levels of it quickly increase at sites of inflammation, mostly on inflammatory and epithelial cells. Given the multitude of RAGE ligands and its inducible expression levels, RAGE is implicated in a variety of inflammation-related pathological states such as neurological and pulmonary disorders, vascular disease, cancer and diabetes (Sims et al, 2010).He and colleagues suggest that RAGE is a PS receptor during apoptotic cell engulfment in alveolar macrophages (He et al, 2011). Furthermore, sRAGE—which can bind to PS and apoptotic thymocytes—acts as a decoy and inhibits RAGE recognition of PS. By using PS liposomes as an artificial apoptotic target, the authors find RAGE in areas of the membrane in which a pseudopod forms to engulf a PS liposome. Additionally, sRAGE can compete with transmembrane RAGE to block the recognition of PS by the phagocyte and subsequently decrease the engulfment of apoptotic cells. Under homeostatic conditions, alveolar macrophages isolated from RAGE-deficient mice have defects in phagocytosis of apoptotic thymocytes. In a model of lung injury induced by lipopolysaccharide administration, RAGE-deficient mice accumulate neutrophils in the alveolar space and RAGE-deficient macrophages have defects in neutrophil engulfment. Previous works have implicated RAGE expression and/or upregulation in inflammatory conditions. In fact, genetic deletion of RAGE in mice can result in attenuated atherosclerosis, resistance to septic shock and reduced diabetic kidney disease (Ramasamy et al, 2010). Apoptotic cell clearance is generally an immunologically silent process and, therefore, if RAGE significantly contributes to engulfment, RAGE-deficient mice would be expected to have defects in cell clearance, leading to enhanced inflammation and disease. However, this does not seem to be the case. Thus, future studies should examine cell-type specific deletions of RAGE to clarify its apparently contradictory role in cell clearance and inflammation in these diseases.Given that several modes of PS recognition have been identified (Ravichandran, 2010), there must be some redundancy. The way in which RAGE contributes to this scenario remains to be investigated. Analysis of the expression levels of each PS receptor on different cell types will also help to define their relative importance in individual cells. As RAGE is highly expressed in the lung, it would be interesting to analyse its contribution to apoptotic cell engulfment in this tissue, in comparison with the other PS receptors. Furthermore, RAGE is induced by inflammation, suggesting that it is probably important during disease states to facilitate engulfment and reduce inflammation in the microenvironment.Another interesting question that remains is how RAGE signals to the phagocyte for engulfment. RAGE signalling results in pro-inflammatory cytokine production through activation of NF-κB (Yan et al, 1994), which seems to be different from the production of anti-inflammatory cytokines—such as IL-10 and TGFβ—by phagocytes during cell engulfment. However, as several RAGE ligands exist, the way in which they bind to RAGE could result in differential signalling. RAGE has also been shown to interact with mouse Dia1, leading to downstream activation of Rac1 and Cdc42, and cell migration (Hudson et al, 2008). Now, He and colleagues suggest that RAGE signals to Rac1 through Dia1 in the context of apoptotic cell clearance, as RAGE-deficient macrophages have decreased Rac1 activity in response to PS-liposome engulfment. Two evolutionarily conserved Rac-dependent pathways have been identified to mediate corpse internalization. Engagement of some engulfment receptors such as Bai1, results in Rac activation through the ELMO–Dock180–CrkII complex. ELMO and Dock180 mediate the exchange of GDP to GTP on Rac, whereas CrkII has been proposed to function as an adaptor protein. Another pathway involves signalling from the engulfment receptor LRP1 or stabilin 2, leading to Rac activation through the engulfment adaptor protein (GULP). Additional work is necessary to determine whether RAGE–mDia1 signalling constitutes a third intracellular signalling pathway for cell engulfment.Another interesting question that remains is how RAGE signals to the phagocyte for engulfmentThe study from the Yamamoto team identifies RAGE as a new PS-recognition molecule implicated in apoptotic cell-clearance in the lung. As each new receptor is identified, we are reminded of the redundancy and cell-type-specific expression of PS receptors. Defects in apoptotic cell-clearance lead to a variety of inflammatory diseases, including cardiovascular and autoimmune diseases. This study could also open an interesting therapeutic avenue; if sRAGE blocks the recognition of PS by RAGE and other PS receptors, it might be beneficial as a therapy by enhancing cell clearance and decreasing the severity of cell-clearance-associated diseases.  相似文献   
89.
The IFN-inducible IFI16 and AIM2 proteins act as innate immune sensors for cytosolic double-stranded DNA (dsDNA). On sensing dsDNA, the IFI16 protein induces the expression of IFN-β whereas the AIM2 protein forms an inflammasome, which promotes the secretion of IL-1β. Given that the knockdown of IFI16 expression in human diploid fibroblasts (HDF) delays the onset of cellular senescence, we investigated the potential roles for the IFI16 and AIM2 proteins in cellular senescence. We found that increased IFI16 protein levels in old (vs. young) HDFs were associated with the induction of IFN-β. In contrast, increased levels of the AIM2 protein in the senescent (vs. old) HDFs were associated with increased production of IL-1β. The knockdown of type I IFN-α receptor subunit, which reduced the basal levels of the IFI16 but not of the AIM2, protein delayed the onset of cellular senescence. Accordingly, increased constitutive levels of IFI16 and AIM2 proteins in ataxia telangiectasia mutated (ATM) HDFs were associated with the activation of the IFN signaling and increased levels of IL-1β. The IFN-β treatment of the young HDFs, which induced the expression of IFI16 and AIM2 proteins, activated a DNA damage response and also increased basal levels of IL-1β. Interestingly, the knockdown of AIM2 expression in HDFs increased the basal levels of IFI16 protein and activated the IFN signaling. In contrast, the knockdown of the IFI16 expression in HDFs decreased the basal and dsDNA-induced activation of the IFN signaling. Collectively, our observations show differential roles for the IFI16 and AIM2 proteins in cellular senescence and associated secretory phenotype.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号