首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1225篇
  免费   81篇
  1306篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   16篇
  2020年   19篇
  2019年   19篇
  2018年   19篇
  2017年   23篇
  2016年   25篇
  2015年   35篇
  2014年   44篇
  2013年   100篇
  2012年   87篇
  2011年   80篇
  2010年   53篇
  2009年   54篇
  2008年   63篇
  2007年   85篇
  2006年   93篇
  2005年   87篇
  2004年   90篇
  2003年   75篇
  2002年   83篇
  2001年   16篇
  2000年   8篇
  1999年   8篇
  1998年   17篇
  1997年   10篇
  1996年   6篇
  1995年   7篇
  1994年   9篇
  1993年   8篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1976年   2篇
  1963年   1篇
排序方式: 共有1306条查询结果,搜索用时 15 毫秒
81.
The Cu-containing nitrite reductase from Hyphomicrobium denitrificans (HydNIR) has been spectroscopically and functionally characterized. The visible absorption spectrum implies that the enzyme has two type 1 Cu ions in one subunit (ca. 50 kDa). The electron paramagnetic resonance (EPR) spectrum of HydNIR is simulated assuming the sum of three distinct S = 1/2 systems: two type 1 Cu signals (axial and rhombic symmetries) and one type 2 Cu signal. The intramolecular electron transfer reaction from the type 1 Cu to the type 2 Cu at pH 6.0 does not occur in the absence of nitrite, but a very slow electron transfer reaction is observed in the presence of nitrite. The apparent first-order rate constants for the intramolecular electron transfer reactions (k(ET(intra))) in the presence of nitrite and also the apparent catalytic rate constants (k(cat)) of HydNIR decrease gradually with increasing pH in the range of pH 4.5-7.5. These pH profiles are substantially similar to each other, suggesting that the intramolecular electron transfer process is linked to the subsequent nitrite reduction process.  相似文献   
82.
Seven additional components, polyoxins C, D, E, F, G, H and I were isolated from polyoxin complex. They have molecular formulae corresponding to C11H15N3O8, C17H23N5O14, C17H23N5O13, C23H30N6O15, C17H25N5O12, C23H32N6O13 and C19H24N4O12, respectively. These polyoxins except inactive polyoxins C and I were highly active against various kinds of phytopathogenic fungi. The close structural similarity among them including polyoxins A and B is also discussed.  相似文献   
83.
84.
We synthesized and isolated 2α-substituted analogs of 14-epi-previtamin D3 after thermal isomerization at 80 °C for the first time. The VDR binding affinity and transactivation activity of osteocalcin promoter in HOS cells were evaluated, and the 2α-methyl-substituted analog was found to have greater genomic activity than 14-epi-previtamin D3.  相似文献   
85.
We previously demonstrated in mast cell lines RBL2H3 and FMA3 that tryptophan hydroxylase (TPH) undergoes very fast turnover driven by 26S-proteasomes [Kojima, M., Oguro, K., Sawabe, K., Iida, Y., Ikeda, R., Yamashita, A., Nakanishi, N. & Hasegawa, H. (2000) J. Biochem (Tokyo) 2000, 127, 121-127]. In the present study, we have examined an involvement of TPH phosphorylation in the rapid turnover, using non-neural TPH. The proteasome-driven degradation of TPH in living cells was accelerated by okadaic acid, a protein phosphatase inhibitor. Incorporation of 32P into a 53-kDa protein, which was judged to be TPH based on autoradiography and Western blot analysis using anti-TPH serum and purified TPH as the size marker, was observed in FMA3 cells only in the presence of both okadaic acid and MG132, inhibitors of protein phosphatase and proteasome, respectively. In a cell-free proteasome system constituted mainly of RBL2H3 cell extracts, degradation of exogenous TPH isolated from mastocytoma P-815 cells was inhibited by protein kinase inhibitors KN-62 and K252a but not by H89. Consistent with the inhibitor specificity, the same TPH was phosphorylated by exogenous Ca2+/calmodulin-dependent protein kinase II in the presence of Ca2+ and calmodulin but not by protein kinase A (catalytic subunit). TPH protein thus phosphorylated by Ca2+/calmodulin-dependent protein kinase II was digested more rapidly in the cell-free proteasome system than was the nonphosphorylated enzyme. These results indicated that the phosphorylation of TPH was a prerequisite for proteasome-driven TPH degradation.  相似文献   
86.
Summary Chimaeric genes containing the chloramphenicol acetyltransferase (CAT) coding sequence were introduced into protoplasts of suspension-cultured tobacco cells using improved conditions of electroporation (Okada et al. 1986). CAT activity became detectable in the protoplasts within 3 h, was maximal during a period of 18–36 h after electroporation, and then declined gradually. Alpha-amanitin added to the medium abolished the transient expression of the CAT gene. The closed circular form of input DNA was as effective as the linear form for the transient expression. The suspension culture was treated with aphidicolin, and S, G2, M and G1 phases were identified in the highly synchronized cell cycle obtained by releasing the cells from the inhibition of DNA synthesis. When a chimacric CAT gene was introduced into M phase protoplasts prepared from the synchronized culture, the transient expression of the CAT gene was 3–4 times higher than when it was introduced into protoplasts of other cell cycle phases. The frequency of stable transformation with a chimaeric neomycin phosphotransferase II gene was studied using the same system. G-418-resistant transformants were obtained from M phase protoplasts at frequencies 2–8 times those obtained from protoplasts at other cell cycle phases. The results indicate that the absence of the nuclear membrane in mitotic cells favours delivery to the nucleus of exogenous DNA introduced into the cytoplasm.  相似文献   
87.
Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella , which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA) cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-)oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.  相似文献   
88.
To investigate the mechanism of action of the potent antiviral compound PD 404182, three novel photoaffinity probes equipped with a biotin or alkyne indicator were designed and synthesized based on previous structure–activity relationship studies. These probes retained the potent anti-HIV activity of the original pyrimidobenzothiazine derivatives. In photoaffinity labeling studies using HIV-1-infected H9 cells (H9IIIB), eight potential proteins were observed to bind PD 404182.  相似文献   
89.
Genome editing can introduce designed mutations into a target genomic site. Recent research has revealed that it can also induce various unintended events such as structural variations, small indels, and substitutions at, and in some cases, away from the target site. These rearrangements may result in confounding phenotypes in biomedical research samples and cause a concern in clinical or agricultural applications. However, current genotyping methods do not allow a comprehensive analysis of diverse mutations for phasing and mosaic variant detection. Here, we developed a genotyping method with an on-target site analysis software named Determine Allele mutations and Judge Intended genotype by Nanopore sequencer (DAJIN) that can automatically identify and classify both intended and unintended diverse mutations, including point mutations, deletions, inversions, and cis double knock-in at single-nucleotide resolution. Our approach with DAJIN can handle approximately 100 samples under different editing conditions in a single run. With its high versatility, scalability, and convenience, DAJIN-assisted multiplex genotyping may become a new standard for validating genome editing outcomes.

Genome editing can introduce designed mutations into a target genomic site, but also into unintended off-target sites. DAJIN, a novel nanopore sequencing data analysis tool, identifies and quantifies allele numbers and their mutation patterns, reporting consensus sequences and visualizing mutations in alleles at single-nucleotide resolution.  相似文献   
90.
Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) is known to take an endosomal pathway for cell entry; however, it is thought to enter directly from the cell surface when a receptor-bound virion spike (S) protein is affected by trypsin, which induces cleavage of the S protein and activates its fusion potential. This suggests that SARS-CoV bearing a cleaved form of the S protein can enter cells directly from the cell surface without trypsin treatment. To explore this possibility, we introduced a furin-like cleavage sequence in the S protein at amino acids 798 to 801 and found that the mutated S protein was cleaved and induced cell fusion without trypsin treatment when expressed on the cell surface. Furthermore, a pseudotype virus bearing a cleaved S protein was revealed to infect cells in the presence of a lysosomotropic agent as well as a protease inhibitor, both of which are known to block SARS-CoV infection via an endosome, whereas the infection of pseudotypes with an uncleaved, wild-type S protein was blocked by these agents. A heptad repeat peptide, derived from a SARS-CoV S protein that is known to efficiently block infections from the cell surface, blocked the infection by a pseudotype with a cleaved S protein but not that with an uncleaved S protein. Those results indicate that SARS-CoV with a cleaved S protein is able to enter cells directly from the cell surface and agree with the previous observation of the protease-mediated cell surface entry of SARS-CoV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号