首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   51篇
  2023年   6篇
  2022年   14篇
  2021年   20篇
  2020年   7篇
  2019年   9篇
  2018年   13篇
  2017年   15篇
  2016年   25篇
  2015年   30篇
  2014年   25篇
  2013年   36篇
  2012年   40篇
  2011年   33篇
  2010年   33篇
  2009年   27篇
  2008年   33篇
  2007年   39篇
  2006年   27篇
  2005年   17篇
  2004年   23篇
  2003年   28篇
  2002年   13篇
  2001年   11篇
  2000年   10篇
  1999年   10篇
  1998年   2篇
  1997年   5篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1992年   3篇
  1991年   4篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1985年   5篇
  1982年   2篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1976年   4篇
  1975年   15篇
  1974年   8篇
  1973年   4篇
  1971年   2篇
  1967年   4篇
  1966年   3篇
  1964年   1篇
  1962年   1篇
  1944年   1篇
排序方式: 共有645条查询结果,搜索用时 15 毫秒
101.
102.
Medicinal plants are considered immunomodulatory as they display various biological activities. There is no report addressing the anti-inflammatory effects of Daphne gnidium. In this study, we investigated the effects of D. gnidium ethyl acetate (EA) leaf extract on mice immune cell function in vitro. Production of pro-inflammatory cytokines (IL-1β and TNF-α), cyclooxygenase-2-derived prostaglandinE2 (PGE2) and iNOS-II-synthesised nitric oxide (NO) were examined. EA extract effect on mitogen-induced lymphocyte proliferation was also investigated. We reported for the first time that D. gnidium EA leaf extract dose-dependently inhibits macrophage proinflammatory function by reducing LPS-induced production of IL-1β, TNF-α, COX-2-derived PGE2 and iNOS-II-synthesised NO. Mitogen-induced lymphocyte proliferation was also dose-dependently inhibited by the extract. Lectin-induced response appears to be more sensitive to the suppressive effects of the extract than LPS-stimulated response. Collectively, these results demonstrate that D. gnidium EA leaf extract acts as an in vitro anti-inflammatory factor by inhibiting mice macrophage and lymphocyte activities.  相似文献   
103.
AaCtx is the first chlorotoxin-like peptide isolated from Androctonus australis scorpion venom. Its amino acid sequence shares 70% similarity with chlorotoxin from Leiurus quinquestriatus scorpion venom, from which it differs by twelve amino acids. Due to its very low concentration in venom (0.05%), AaCtx was chemically synthesized. Both native and synthetic AaCtx were active on invasion and migration of human glioma cells. However, their activity was found to be lower than that of chlorotoxin. The molecular model of AaCtx shows that most of amino acids differing between AaCtx and chlorotoxin are localized on the N-terminal loop and the α-helix. Based on known compounds that block chloride channels, we suggest that the absence of negative charged amino acids on AaCtx structure may be responsible for its weak activity on glioma cells migration and invasion. This finding serves as a starting point for structure-function relationship studies leading to design high specific anti-glioma drugs.  相似文献   
104.
Mutations in the anion exchanger pendrin are responsible for Pendred syndrome, an autosomal recessive disease characterized by deafness and goitre. Pendrin is highly expressed in kidney collecting ducts, where it acts as a chloride/bicarbonate exchanger and thereby contributes to the regulation of acid-base homoeostasis and blood pressure. The present study aimed to characterize the intrinsic properties of pendrin. Mouse pendrin was transfected in HEK (human embryonic kidney) 293 and OKP (opossum kidney proximal tubule) cells and its activity was determined by monitoring changes in the intracellular pH induced by variations of transmembrane anion gradients. Combining measurements of pendrin activity with mathematical modelling we found that its affinity for Cl-, HCO3- and OH- varies with intracellular pH, with increased activity at low intracellular pH. Maximal pendrin activity was also stimulated at low extracellular pH, suggesting the presence of both intracellular and extracellular proton regulatory sites. We identified five putative pendrin glycosylation sites, only two of which are used. Mutagenesis-induced disruption of pendrin glycosylation did not alter its cell-surface expression or polarized targeting to the apical membrane and basal activity, but fully abrogated its sensitivity to extracellular pH. The hither to unknown regulation of pendrin by external pH may constitute a key mechanism in controlling ionic exchanges across the collecting duct and inner ear.  相似文献   
105.
The renal-specific Na-K-2Cl co-transporter, NKCC2, plays a pivotal role in regulating body salt levels and blood pressure. NKCC2 mutations lead to type I Bartter syndrome, a life-threatening kidney disease. Regulation of NKCC2 trafficking behavior serves as a major mechanism in controlling NKCC2 activity across the plasma membrane. However, the identities of the protein partners involved in cell surface targeting of NKCC2 are largely unknown. To gain insight into these processes, we used a yeast two-hybrid system to screen a kidney cDNA library for proteins that interact with the NKCC2 C terminus. One binding partner we identified was SCAMP2 (secretory carrier membrane protein 2). Microscopic confocal imaging and co-immunoprecipitation assays confirmed NKCC2-SCAMP2 interaction in renal cells. SCAMP2 associated also with the structurally related co-transporter NCC, suggesting that the interaction with SCAMP2 is a common feature of sodium-dependent chloride co-transporters. Heterologous expression of SCAMP2 specifically decreased cell surface abundance as well as transport activity of NKCC2 across the plasma membrane. Co-immunolocalization experiments revealed that intracellularly retained NKCC2 co-localizes with SCAMP2 in recycling endosomes. The rate of NKCC2 endocytic retrieval, assessed by the sodium 2-mercaptoethane sulfonate cleavage assay, was not affected by SCAMP2. The surface-biotinylatable fraction of newly inserted NKCC2 in the plasma membrane was reduced by SCAMP2, demonstrating that SCAMP2-induced decrease in surface NKCC2 is due to decreased exocytotic trafficking. Finally, a single amino acid mutation, cysteine 201 to alanine, within the conserved cytoplasmic E peptide of SCAMP2, which is believed to regulate exocytosis, abolished SCAMP2-mediated down-regulation of the co-transporter. Taken together, these data are consistent with a model whereby SCAMP2 regulates NKCC2 transit through recycling endosomes and limits the cell surface targeting of the co-transporter by interfering with its exocytotic trafficking.  相似文献   
106.
In the present study, we were interested in the effect of salt stress on phenolic and carotenoid contents, antioxidant and antimicrobial activity of two varieties of Carthamus tinctorius (Jawhara and 104) flowers. For this purpose, C. tinctorius flowers from plants grown under four saline treatments (0, 5, 10 and 15 g/L NaCl) were collected at two development stages. As salinity increased up to 10 g/L, results showed that total phenols, flavonoids, condensed tannins and carotenoid contents increased with salinity. Such variability might be of great importance in terms of valorizing this plant as a source of naturally secondary metabolites. Furthermore, our results showed an enhancement of antioxidant activity which was evaluated by four different test systems (DPPH, β-carotene–linoleic acid, chelating and reducing power assays) with increasing stress severity. Obtained results showed that, for the two varieties, salt effect was more pronounced at post flowering stage than full flowering one. The sensitivity test of the methanolic extracts of the harvested flowers was applied against seven human pathogenic bacteria and three yeast strains. Salinity reduced significantly the antimicrobial activity of flower extracts.  相似文献   
107.
108.

Background and Aims

The structure of a forest stand, i.e. the distribution of tree size features, has strong effects on its functioning. The management of the structure is therefore an important tool in mitigating the impact of predicted changes in climate on forests, especially with respect to drought. Here, a new functional–structural model is presented and is used to assess the effects of management on forest functioning at a national scale.

Methods

The stand process-based model (PBM) Castanea was coupled to a stand structure module (SSM) based on empirical tree-to-tree competition rules. The calibration of the SSM was based on a thorough analysis of intersite and interannual variability of competition asymmetry. The coupled Castanea–SSM model was evaluated across France using forest inventory data, and used to compare the effect of contrasted silvicultural practices on simulated stand carbon fluxes and growth.

Key Results

The asymmetry of competition varied consistently with stand productivity at both spatial and temporal scales. The modelling of the competition rules enabled efficient prediction of changes in stand structure within the Castanea PBM. The coupled model predicted an increase in net primary productivity (NPP) with management intensity, resulting in higher growth. This positive effect of management was found to vary at a national scale across France: the highest increases in NPP were attained in forests facing moderate to high water stress; however, the absolute effect of management on simulated stand growth remained moderate to low because stand thinning involved changes in carbon allocation at the tree scale.

Conclusions

This modelling approach helps to identify the areas where management efforts should be concentrated in order to mitigate near-future drought impact on national forest productivity. Around a quarter of the French temperate oak and beech forests are currently in zones of high vulnerability, where management could thus mitigate the influence of climate change on forest yield  相似文献   
109.
BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.  相似文献   
110.
Members of the family Trypanosomatidae infect many organisms, including animals, plants and humans. Plant-infecting trypanosomes are grouped under the single genus Phytomonas, failing to reflect the wide biological and pathological diversity of these protists. While some Phytomonas spp. multiply in the latex of plants, or in fruit or seeds without apparent pathogenicity, others colonize the phloem sap and afflict plants of substantial economic value, including the coffee tree, coconut and oil palms. Plant trypanosomes have not been studied extensively at the genome level, a major gap in understanding and controlling pathogenesis. We describe the genome sequences of two plant trypanosomatids, one pathogenic isolate from a Guianan coconut and one non-symptomatic isolate from Euphorbia collected in France. Although these parasites have extremely distinct pathogenic impacts, very few genes are unique to either, with the vast majority of genes shared by both isolates. Significantly, both Phytomonas spp. genomes consist essentially of single copy genes for the bulk of their metabolic enzymes, whereas other trypanosomatids e.g. Leishmania and Trypanosoma possess multiple paralogous genes or families. Indeed, comparison with other trypanosomatid genomes revealed a highly streamlined genome, encoding for a minimized metabolic system while conserving the major pathways, and with retention of a full complement of endomembrane organelles, but with no evidence for functional complexity. Identification of the metabolic genes of Phytomonas provides opportunities for establishing in vitro culturing of these fastidious parasites and new tools for the control of agricultural plant disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号