首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1885篇
  免费   137篇
  国内免费   2篇
  2024篇
  2022年   16篇
  2021年   54篇
  2020年   34篇
  2019年   23篇
  2018年   45篇
  2017年   39篇
  2016年   47篇
  2015年   77篇
  2014年   89篇
  2013年   115篇
  2012年   144篇
  2011年   137篇
  2010年   69篇
  2009年   60篇
  2008年   94篇
  2007年   69篇
  2006年   72篇
  2005年   67篇
  2004年   59篇
  2003年   64篇
  2002年   41篇
  2001年   39篇
  2000年   32篇
  1999年   25篇
  1998年   15篇
  1997年   17篇
  1995年   10篇
  1994年   13篇
  1992年   36篇
  1991年   24篇
  1990年   23篇
  1989年   22篇
  1988年   15篇
  1987年   24篇
  1986年   13篇
  1985年   25篇
  1984年   29篇
  1983年   16篇
  1982年   16篇
  1981年   18篇
  1979年   24篇
  1978年   14篇
  1977年   13篇
  1975年   12篇
  1974年   14篇
  1973年   10篇
  1969年   13篇
  1968年   10篇
  1967年   9篇
  1966年   10篇
排序方式: 共有2024条查询结果,搜索用时 15 毫秒
141.
Epoxyeicosatrienoic acids (EETs) are endothelium-derived eicosanoids that activate potassium channels, hyperpolarize the membrane, and cause relaxation. We tested 19 analogs of 14,15-EET on vascular tone to determine the structural features required for activity. 14,15-EET relaxed bovine coronary arterial rings in a concentration-related manner (ED(50) = 10(-6) M). Changing the carboxyl to an alcohol eliminated dilator activity, whereas 14,15-EET-methyl ester and 14,15-EET-methylsulfonimide retained full activity. Shortening the distance between the carboxyl and epoxy groups reduced the agonist potency and activity. Removal of all three double bonds decreased potency. An analog with a Delta8 double bond had full activity and potency. However, the analogs with only a Delta5 or Delta11 double bond had reduced potency. Conversion of the epoxy oxygen to a sulfur or nitrogen resulted in loss of activity. 14(S),15(R)-EET was more potent than 14(R),15(S)-EET, and 14,15-(cis)-EET was more potent than 14,15-(trans)-EET. These studies indicate that the structural features of 14,15-EET required for relaxation of the bovine coronary artery include a carbon-1 acidic group, a Delta8 double bond, and a 14(S),15(R)-(cis)-epoxy group.  相似文献   
142.
Chemotherapy is an important therapeutic strategy for cancer treatment and remains the mainstay for the management of human malignancies; however, chemotherapy fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Recently, emerging evidences suggest that Notch signaling pathway is one of the most important signaling pathways in drug-resistant tumor cells. Moreover, down-regulation of Notch pathway could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. This article will provide a brief overview of the published evidences in support of the roles of Notch in drug resistance and will further summarize how targeting Notch by “natural agents” could become a novel and safer approach for the improvement of tumor treatment by overcoming drug resistance.  相似文献   
143.
144.
The extracellular enzyme alginate lyase produced from marine fungus Aspergillus oryzae isolated from brown alga Dictyota dichotoma was purified, partially characterized, and evaluated for its sodium alginate depolymerization abilities. The enzyme characterization studies have revealed that alginate lyase consisted of two polypeptides with about 45 and 50 kDa each on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and showed 140-fold higher activity than crude enzyme under optimized pH (6.5) and temperature (35°C) conditions. Zn2+, Mn2+, Cu2+, Mg2+, Co2+ and NaCl were found to enhance the enzyme activity while (Ca2+, Cd2+, Fe2+, Hg2+, Sr2+, Ni2+), glutathione, and metal chelators (ethylenediaminetetraacetic acid and ethylene glycol tetraacetic acid) suppressed the activity. Fourier transform infrared and thin-layer chromatography analysis of depolymerized sodium alginate indicated the enzyme specificity for cleaving at the β-1,4 glycosidic bond between polyM and polyG blocks of sodium alginate and therefore resulted in estimation of relatively higher polyM content than polyG. Comparison of chemical shifts in 13C nuclear magnetic resonance spectra of both polyM and polyG from that of sodium alginate also showed further evidence for enzymatic depolymerization of sodium alginate.  相似文献   
145.
The biosynthesis of protein-bound complex N-glycans in mammals requires a series of covalent modifications governed by a large number of specific glycosyltransferases and glycosidases. The addition of oligosaccharide to an asparagine residue on a nascent polypeptide chain begins in the endoplasmic reticulum. Oligosaccharide processing continues in the Golgi apparatus to produce a diversity of glycan structures. UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (EC 2.4.1.101; GlcNAc-TI) is a key enzyme in the process because it is essential for the conversion of high-mannose N-glycans to complex and hybrid N-glycans. We have isolated the mouse gene encoding GlcNAc-TI (Mgat-1) from a genomic DNA library. The mouse sequence is highly conserved with respect to the human and rabbit homologs and exists as a single protein-encoding exon. Mgat-1 was mapped to mouse Chromosome 11, closely linked to the gene encoding interleukin-3 by the analysis of multilocus interspecies backcrosses. RNA analyses of Mgat-1 expression levels revealed significant variation among normal tissues and cells.  相似文献   
146.
147.
Androgen-dependent synthesis of alpha 2u globulin in the rat liver has been used in our laboratory as a model for studying the effect of sex hormones on hepatic gene expression. alpha 2u Globulin is a group of low molecular weight (Mr approximately 18,000) male specific urinary proteins synthesized and secreted by hepatocytes. In the male rat hepatic synthesis of alpha 2u globulin begins at puberty (approximately 40 days), reaches a peak level (approximately 20 mg/day) at about 75 days and declines during old age. Androgens can induce alpha 2u globulin in ovariectomized female rats in vivo and in the liver perfusion system in vitro. However, both prepubertal and senescent (greater than 800 days) male rats not only do not produce alpha 2u globulin but are also refractory to androgen administration. alpha 2u Globulin is coded by a multigene family comprising about 20-30 gene copies per haploid genome. All of these gene copies seem to express translationally active mRNAs giving rise to individual isoforms of alpha 2u globulin. Appearance and disappearance of the cytoplasmic androgen-binding protein (CAB) correlates with the androgen responsiveness of hepatocytes. Photoaffinity labeling of the hepatic cytosol shows that the biologically active binding protein, found in the cytosol of the mature male rat liver, has a molecular weight of 31 kDa. A molecular transition of the 31-kDa CAB to a biologically inactive 29-kDa form may be the basis of hepatic androgen insensitivity during prepuberty and senescence.  相似文献   
148.
Crude hemolysin from four KP+ strains of Vibrio parahaemolyticus belonging to serotype 02:K3 exhibited a major protein band (molecular weight, 65 kilodaltons (kDa] in addition to a previously known thermostable direct hemolysin band (molecular weight, 21 kDa) in SDS - polyacrylamide slab gel electrophoresis. These strains showed maximum virulence leading to 100% mouse lethality within 2-6 h. It is hypothesized that this 65-kDa protein may play a vital role in the pathogenesis of the disease caused by V. parahaemolyticus.  相似文献   
149.
Characterization of a beta1,2-xylosyltransferase from Arabidopsis thaliana (AtXylT) was carried out by expression in Sf9 insect cells using a baculovirus vector system. Serial deletions at both the N- and C-terminal ends proved that integrity of a large domain located between amino acid 31 and the C-terminal lumenal region is required for AtXylT activity expression. The influence of N-glycosylation on AtXylT activity has been evaluated using either tunicamycin or mutagenesis of potential N-glycosylation sites. AtXylT is glycosylated on two of its three potential N-glycosylation sites (Asn51, Asn301, Asn478) and the occupancy of at least one of these two sites (Asn51 and Asn301) is necessary for AtXylT stability and activity. Contribution of the N-terminal part of AtXylT in targeting and intracellular distribution of this protein was studied by expression of variably truncated, GFP-tagged AtXylT forms in tobacco cells using confocal and electron microscopy. These studies have shown that the transmembrane domain of AtXylT and its short flanking amino acid sequences are sufficient to specifically localize a reporter protein to the medial Golgi cisternae in tobacco cells. This study is the first detailed characterization of a plant glycosyltransferase at the molecular level.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号