首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5684篇
  免费   501篇
  国内免费   15篇
  6200篇
  2023年   24篇
  2022年   66篇
  2021年   112篇
  2020年   59篇
  2019年   75篇
  2018年   85篇
  2017年   69篇
  2016年   133篇
  2015年   267篇
  2014年   319篇
  2013年   353篇
  2012年   436篇
  2011年   443篇
  2010年   259篇
  2009年   246篇
  2008年   298篇
  2007年   270篇
  2006年   287篇
  2005年   234篇
  2004年   254篇
  2003年   200篇
  2002年   196篇
  2001年   151篇
  2000年   153篇
  1999年   117篇
  1998年   63篇
  1997年   37篇
  1996年   37篇
  1995年   24篇
  1994年   38篇
  1993年   19篇
  1992年   72篇
  1991年   77篇
  1990年   52篇
  1989年   63篇
  1988年   57篇
  1987年   73篇
  1986年   47篇
  1985年   53篇
  1984年   41篇
  1983年   37篇
  1982年   33篇
  1981年   26篇
  1980年   17篇
  1979年   36篇
  1978年   29篇
  1977年   25篇
  1975年   19篇
  1974年   26篇
  1973年   16篇
排序方式: 共有6200条查询结果,搜索用时 15 毫秒
101.
Biological invaders can have dramatic effects on the environment and the economy. To most effectively manage these invaders, we should consider entire pathways, because multiple species are dispersed through the same vectors. In this paper, we use production-constrained gravity models to describe movement of recreational boaters between lakes – potentially the most important pathway of overland dispersal for many aquatic organisms. These models are advantageous because they require relatively easily acquired data, hence are relatively easy to build. We compare linear and non-linear gravity models and show that, despite their simplicity, they are able to capture important characteristics of the recreational boater pathway. To assess our model, we compared observed data based on creel surveys and mailed surveys of recreation boaters to the model output. Specifically, we evaluate four metrics of pathway characteristics: boater traffic to individual lakes, distances traveled to reach these lakes, Great Lakes usage and movement from the Great Lakes to inland waters. These factors will influence the propagule pressure (hence the probability of establishment of invasive populations) and the rate of spread across a landscape. The Great Lakes are of particular importance because they are a major entry point of non-indigenous species from other continents, hence will act as the origin for further spread across states. The non-linear model had the best fit between model output and empirical observations with r2 =0.80, r2 =0.35, r2 =0.57, and r2 =0.36 for the four metrics, respectively. For the distances traveled to individual lakes, r2 improved from 0.35 to 0.76 after removal of an outlier. Our results suggest that we were able to capture distances traveled to most but not all lakes. Thus, we demonstrate that production-constrained gravity models will be generally useful for modeling invasion pathways between non-contiguous locations.  相似文献   
102.
103.
The SNARE protein syntaxin 1A (Syn1A) is known to inhibit delayed rectifier K(+) channels of the K(v)1 and K(v)2 families with heterogeneous effects on their gating properties. In this study, we explored whether Syn1A could directly modulate K(v)4.3, a rapidly inactivating K(v) channel with important roles in neuroendocrine cells and cardiac myocytes. Immunoprecipitation studies in HEK293 cells coexpressing Syn1A and K(v)4.3 revealed a direct interaction with increased trafficking to the plasma membrane without a change in channel synthesis. Paradoxically, Syn1A inhibited K(v)4.3 current density. In particular, Syn1A produced a left-shift in steady-state inactivation of K(v)4.3 without affecting either voltage dependence of activation or gating kinetics, a pattern distinct from other K(v) channels. Combined with our previous reports, our results further verify the notion that the mechanisms involved in Syn1A-K(v) interactions vary significantly between K(v) channels, thus providing a wide scope for Syn1A modulation of exocytosis and membrane excitability.  相似文献   
104.
105.
Summary The focus of this review is to examine some of the reasons biodegradation may not take place in the environment even though its occurrence in the laboratory has been demonstrated. Some approaches for dealing with chemical persistence will be discussed. In addition, the potential of bioremediation as an in situ clean-up technology will be considered.  相似文献   
106.
An inability to repair DNA double-strand breaks (DSBs) threatens genome integrity and can contribute to human diseases, including cancer. Mammalian cells repair DSBs mainly through homologous recombination (HR) and nonhomologous end-joining (NHEJ). The choice between these pathways is regulated by the interplay between 53BP1 and BRCA1, whereby BRCA1 excludes 53BP1 to promote HR and 53BP1 limits BRCA1 to facilitate NHEJ. Here, we identify the zinc-finger proteins (ZnF), ZMYM2 and ZMYM3, as antagonizers of 53BP1 recruitment that facilitate HR protein recruitment and function at DNA breaks. Mechanistically, we show that ZMYM2 recruitment to DSBs and suppression of break-associated 53BP1 requires the SUMO E3 ligase PIAS4, as well as SUMO binding by ZMYM2. Cells deficient for ZMYM2/3 display genome instability, PARP inhibitor and ionizing radiation sensitivity and reduced HR repair. Importantly, depletion of 53BP1 in ZMYM2/3-deficient cells rescues BRCA1 recruitment to and HR repair of DSBs, suggesting that ZMYM2 and ZMYM3 primarily function to restrict 53BP1 engagement at breaks to favor BRCA1 loading that functions to channel breaks to HR repair. Identification of DNA repair functions for these poorly characterized ZnF proteins may shed light on their unknown contributions to human diseases, where they have been reported to be highly dysregulated, including in several cancers.  相似文献   
107.
108.
FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL’s interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the β-domain of FtsQ. Consistent with this, we found the connection between the α- and β-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.  相似文献   
109.
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus‐infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV‐1‐infected cells. By combining an unbiased large‐scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV‐1‐infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor‐mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL‐mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL‐mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti‐HIV‐1 activity of NK cells but also possesses a multifunctional role beyond receptor‐mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.  相似文献   
110.
Gain-of-function mutations in fibroblast growth factor (FGF) receptors result in chondrodysplasia and craniosynostosis syndromes, highlighting the critical role for FGF signaling in skeletal development. Although the FGFRs involved in skeletal development have been well characterized, only a single FGF ligand, FGF18, has been identified that regulates skeletal development during embryogenesis. Here we identify Fgf9 as a second FGF ligand that is critical for skeletal development. We show that Fgf9 is expressed in the proximity of developing skeletal elements and that Fgf9-deficient mice exhibit rhizomelia (a disproportionate shortening of proximal skeletal elements), which is a prominent feature of patients with FGFR3-induced chondrodysplasia syndromes. Although Fgf9 is expressed in the apical ectodermal ridge in the limb bud, we demonstrate that the Fgf9-/- limb phenotype results from loss of FGF9 functions after formation of the mesenchymal condensation. In developing stylopod elements, FGF9 promotes chondrocyte hypertrophy at early stages and regulates vascularization of the growth plate and osteogenesis at later stages of skeletal development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号