首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   10篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   6篇
  2013年   23篇
  2012年   13篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   9篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   7篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1970年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
81.
This technique for localizing catecholic residues in biological samples is based on the condensation of Besthorn's hydrazone (3-methyl-2-benzothiazolinone hydrazone hydrochloride (MBTH) with quinone residues obtained by the oxidation of catechols in the presence of ammonia. The product is a dark pink MBTH-quinone compound. This method is very sensitive and positive to catechol even at the 0.05 µg level and the final product is chemically stable.  相似文献   
82.
Pure and Li+‐doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X‐ray diffraction, ultraviolet‐visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X‐ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet‐visible and PL spectra revealed that Li+ activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li+ enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383–456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green‐ and blue‐emitting organic light emitting diode, PL liquid‐crystal display and solid‐state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
83.
Yttrium is stoichiometrically doped into europium by mole percentage, during the synthesis of Y(1‐x)Eu(x)(TTA)3(Phen), using solution techniques (where x = 0.2, 0.4, 0.5, 0.6 and 0.8, TTA = thenoyltrifluoroacetone and Phen = 1,10‐phenanthroline).These complexes were characterized using different techniques such as X‐ray diffraction, thermogravimetric/differential thermal analysis, optical absorption and emission spectra. Thin films of the doped Eu–Y complexes were prepared on a glass substrate under a high vacuum of 10‐6 Torr. The photoluminescence spectra of these thin films were recorded by exciting the sample at a wavelength of 360 nm. The emission peak for all the synthesized complexes centered at 611 nm; maximum emission intensity was obtained from Y0.6Eu0.4 (TTA)3(Phen). The results proved that these doped complexes are more economical than pure Eu(TTA)3(Phen) and are best suited as red emissive material for energy‐efficient and eco‐friendly organic light‐emitting diodes and displays. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
84.
Herpesvirus saimiri encodes a functional homolog of human regulator-of-complement-activation proteins named CCPH that inactivates complement by accelerating the decay of C3 convertases and by serving as a cofactor in factor I-mediated inactivation of their subunits C3b and C4b. Here, we map the functional domains of CCPH. We demonstrate that short consensus repeat 2 (SCR2) is the minimum domain essential for classical/lectin pathway C3 convertase decay-accelerating activity as well as for factor I cofactor activity for C3b and C4b. Thus, CCPH is the first example wherein a single SCR domain has been shown to display complement regulatory functions.The complement system is an ancient and yet highly evolved effector mechanism of immune defense that forms an imperative branch of innate immunity (23, 46). In addition, recent findings have clearly revealed its role as a vital viaduct between the innate and acquired immune systems (6, 18). Thus, it is not surprising that the system helps in purging a wide array of invaders, including viruses. Consequently, for their successful survival, many viruses have developed mechanisms to subvert the host complement system (7, 24, 26, 29, 39, 45). Herpesviruses and poxviruses, in particular, subvert host complement by encoding structural and/or functional homologs of human complement regulators belonging to the regulator-of-complement-activation (RCA) family, by capturing host membrane complement regulators and by using cellular receptors for entering cells (1, 8, 15, 23).The RCA proteins are formed by multiple tandem repeats of bead-like complement control protein (CCP) domains or short consensus repeats (SCRs) separated by short linkers. It has been suggested that the sequence variations enforced upon these SCR domain folds and the interdomain dynamics dictate the functionality of the complement regulators (17, 19, 44, 49). Because sequence similarity in herpesviral complement regulators varies between 43% and 89% and in poxviral complement regulators exceeds 91%, it is likely that the structural diversity in herpesviral complement regulators may have resulted in functional differences in these proteins and/or have resulted in variation in structural requirements for complement regulation. In the herpesviridae family, detailed functional characterization has been performed for complement regulators of Kaposi''s sarcoma-associated herpesvirus (Kaposica/KCP) (28, 42), herpesvirus saimiri (HVS) (CCPH) (10, 38), and rhesus rhadinovirus (RCP) (31). All these proteins showed conservation of complement regulatory activities, indicating thereby that structural diversity has not resulted in loss of complement regulatory functions in these proteins. However, it is not clear whether sequence variations within the herpesviral complement regulators have resulted in differences in the domain requirements for complement regulatory activities, since mapping of functional domains has been performed only for Kaposica (30, 43). In the present study, we therefore have mapped the complement regulatory domains of HVS CCPH to get further insight into diversity in domain requirements for functional activities.HVS is a classical prototype of the gamma 2-herpesviruses or rhadinoviruses. It causes rapidly progressing fulminant lymphoma, lymphosarcoma, and leukemia of T-cell origin in marmosets, owl monkeys, and other species of New World primates but not in its natural host, the squirrel monkey (9, 16). Unlike other herpesviruses, it encodes two complement regulators: an RCA homolog (ORF 4; CCPH) that regulates the early steps of complement activation (2, 10) and a CD59 homolog (ORF 15) that inhibits the late steps of complement activation (4, 36). The RCA homolog is formed of four SCR modules (Fig. (Fig.1).1). As a result of alternative splicing, the protein is expressed as a full-length membrane-bound form (mCCPH) containing the transmembrane region as well as a spliced secretory form (sCCPH) lacking the transmembrane region (2). Earlier, we showed that sCCPH inhibits complement by targeting C3 convertases: (i) it supports serine protease factor I-mediated inactivation of C3b and C4b, the subunits of C3 convertases (cofactor activity), and (ii) it accelerates the irreversible decay of the classical pathway (CP)/lectin pathway and to a limited extent the alternative pathway (AP) C3 convertases (decay-accelerating activity [DAA]) (38).Open in a separate windowFIG. 1.Schematic illustration of sCCPH and SDS-PAGE analysis of purified recombinant sCCPH and its deletion mutants. (Top) Schematic representation of the structure of the soluble form of CCPH (sCCPH), which is composed of four SCRs. The domains are numbered, and the minimum domains shown to be important for C3b and C4b cofactor activities (CFA) and CP DAA are identified. (Bottom) Expressed and purified sCCPH and its deletion mutants were analyzed by 12% (left) and 13% (right) SDS-PAGE under reducing conditions and stained with Coomassie blue. Molecular weights as determined by SDS-PAGE: for sCCPH, 32,000; for SCR1-3, 26,000; for SCR2-4, 27,500; for SCR1-2, 17,000; for SCR2-3, 17,500; for SCR3-4, 16,500; for SCR1, 9,500; for SCR2, 7,000; for SCR3, 8,000; and for SCR4, 8,000. Molecular mass is expressed as kilodaltons in the figure.(This work was done in partial fulfillment of the Ph.D. thesis requirements of A.K.S., University of Pune, Pune, India.)In order to map the functional domains of sCCPH, we have generated a series of soluble triple, double, and single SCR deletion mutants. In brief, the deletion mutants of sCCPH comprising SCR1-3, -2-4, -1-2, -2-3, and -3-4 as well as SCR1, -2, -3, and -4 were constructed from the full-length HVS sCCPH clone (38) by PCR amplification and cloning into the bacterial expression vector pET29. The authenticity of each of the clones was confirmed by DNA sequencing, and then they were transformed into the Escherichia coli BL21 strain for expression. The mutants carried the histidine tag at the C terminus and hence were purified to homogeneity by using histidine affinity chromatography. Refolding of the purified proteins was performed by using the rapid dilution method as previously described (38, 47, 48), and the refolded proteins were loaded onto a Superose 12 gel filtration column (Pharmacia) to obtain monodisperse populations of the expressed mutants (38, 48). The preservation of various functions in mutants (see below) suggests that the mutants have maintained their proper conformation. The expressed proteins were >95% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis (Fig. (Fig.11).To identify the domains required for cofactor activities of sCCPH against C3b and C4b, we utilized a fluid phase assay wherein C3b or C4b was incubated with each of the deletion mutants and factor I, and inactivation of C3b/C4b (cleavage of the α′-chain) was determined by running the samples on SDS-PAGE gels. It is clear from the data presented in Fig. Fig.22 that sCCPH and the mutants SCR1-3, -2-4, and -1-2 supported the cleavage of the α′-chain of C3b. A very weak cleavage was also supported by SCR2-3 and -3-4. The cleavage of the α′-chain of C4b, however, was supported by sCCPH and the mutants SCR1-3, -2-4, -1-2, and -2-3 but not by SCR3-4 (Fig. (Fig.2).2). Together, these data point out that SCR1 and -2 considerably contribute to the C3b and C4b cofactor activities of sCCPH but that SCR3 and SCR4 in the case of C3b cofactor activity and SCR3 in the case of C4b cofactor activity contribute to its optimal activity. These results, however, did not elucidate whether a single domain(s) could impart the cofactor activities. We therefore expressed the single-domain mutants (SCR1, SCR2, SCR3, and SCR4) and analyzed their cofactor activities. The results presented in Fig. Fig.33 indicate that SCR2, by itself, possesses the ability to support factor I-mediated inactivation of C3b and C4b; SCR3 also displayed very weak cofactor activity against C3b when used at higher concentrations (88 μM; data not shown). These results suggest that structural elements involved in the interaction of sCCPH with factor I are primarily located within SCR2 and -3. Admittedly, the single-domain mutants possess very weak cofactor activities and other domains too contribute to the optimal activity; the cofactor activities of SCR2 for C3b and C4b were 781- and 212-fold lower than that for sCCPH (Fig. (Fig.3).3). It should be mentioned here that earlier observations on mapping of the human RCA proteins (factor H, C4b-binding protein, membrane cofactor protein, and complement receptor 1) (3, 11-13, 21), Kaposica (30), and vaccinia virus CCP (VCP) (27) indicated that a minimum of two (in Kaposica) or three (in all other RCA proteins) successive SCR domains are necessary for factor I cofactor activities. Thus, sCCPH is the first complement regulator in which a single SCR domain has been shown to display the factor I cofactor function.Open in a separate windowFIG. 2.Analysis of factor I cofactor activity of sCCPH and its deletion mutants for human complement proteins C3b and C4b. Cofactor activity was assessed by incubating 3.0 μg of human C3b (upper panels) or C4b (lower panels) with sCCPH/SCR1-3/SCR2-4 (4.0 μM) or SCR1-2/2-3/3-4 (24 μM) in the presence or absence of factor I (100 ng) for the indicated time periods at 37°C in 10 mM sodium phosphate, pH 7.4, containing 145 mM NaCl. The reactions were stopped by addition of sample buffer containing dithiothreitol, and the amount of C3b or C4b cleaved was visualized by subjecting the samples to SDS-PAGE analysis on 10% or 11.5% gel, respectively, and staining with Coomassie blue. During C3b cleavage, the α′-chain is cleaved into N-terminal 68-kDa and C-terminal 46-kDa fragments. The 46-kDa fragment is then cleaved into a 43-kDa fragment. These cleavages indicate inactivation of C3b. In the case of C4b, the α′-chain is cleaved into N-terminal 27-kDa, C-terminal 16-kDa (not visible in the gel), and central C4d fragments. These cleavages indicate the inactivation of C4b.Open in a separate windowFIG. 3.Analysis of factor I cofactor activity (CFA) of single SCR mutants of sCCPH for human complement proteins C3b and C4b. (Upper panels) Cofactor activity was assessed by incubating 3.0 μg of human C3b or C4b with the single SCR mutants (44 μM) in the presence or absence of factor I (100 ng) for 4 h at 37°C in PBS (10 mM sodium phosphate, pH 7.4, containing 145 mM NaCl). The reactions were stopped by addition of sample buffer containing dithiothreitol, and the amount of C3b or C4b cleaved was visualized by subjecting the samples to 13% SDS-PAGE and stained with Coomassie blue. Cleavage of the α′-chain of C3b and C4b and generation of cleavage products indicate the inactivation of these proteins. (Middle panels) Human C3b (3.0 μg) or C4b (3.0 μg) and factor I (100 ng) were incubated in PBS with increasing concentrations of sCCPH or the SCR2 mutant at 37°C for 1 h, and the cleavage products were analyzed as described above. (Lower panels) The intensity of the α′-chains of C3b and C4b in the middle panels was determined densitometrically and is represented graphically. The closed and open circles represent sCCPH and the SCR2 mutant, respectively.As discussed above, in addition to the inactivation of subunits of C3 convertases (C3b and C4b), sCCPH also regulates C3 convertases by accelerating their decay. It possesses considerable DAA for the CP/lectin pathway C3 convertase (C4b,2a) and a poor decay activity for the AP C3 convertase (C3b,Bb). Thus, we next examined the DAAs of the various sCCPH mutants to map the domains required for this function. To measure the CP C3 convertase decay activity, the C4b,2a enzyme was formed on sheep erythrocytes and allowed to decay in the presence of various mutants. The remaining enzyme activity was then measured by incubating the reaction mixture with EDTA sera (a source of C3 to C9) and measuring hemolysis. Apart from sCCPH, mutants SCR1-3, -1-2, and -2-3 showed substantial DAA for the CP C3 convertase (Fig. (Fig.4).4). These data suggested that SCR1-3 is primarily responsible for this activity. On a molar basis, SCR1-3 was 1.6-fold less efficient than sCCPH. Because both SCR1-2 and SCR2-3 possessed the decay activity, it was likely that similar to the cofactor activities, a single SCR domain of sCCPH might also possess the DAA for the CP C3 convertase. Hence, we also assessed the DAAs of the single-domain mutants. Interestingly again, SCR2 was the only single domain that distinctly displayed CP DAA (Fig. (Fig.4);4); however, on a molar basis, it was 26-fold less active than sCCPH. Previous data on the involvement of SCR domains in decay acceleration of CP C3 convertase in human RCA proteins (decay-accelerating factor, complement receptor 1, and C4b-binding protein) (3, 5, 20) and viral RCA homologs (Kaposica and VCP) (27, 30) have shown that a minimum of two or three consecutive domains are necessary for the activity. Thus, sCCPH is the only prototype to date in which a single SCR is adequate to impart the CP DAA.Open in a separate windowFIG. 4.Analysis of CP and AP C3 convertase DAAs of sCCPH and its mutants. (Upper panel) The CP C3 convertase C4b,2a was formed on antibody-coated sheep erythrocytes (EA) by sequentially incubating them with human C1, C4, and C2 (Calbiochem). The C3 convertase on the cells was then allowed to decay by incubating EA-C4b,2a with various concentrations of sCCPH or its mutants for 5 min at 22°C, and the activity of the remaining enzyme was assessed by measuring the cell lysis following incubation for 30 min at 37°C with Guinea pig sera containing 40 mM EDTA (27, 32). (Lower panel) The AP C3 convertase C3b,Bb was formed on sheep erythrocytes (ES) by incubating them with human C3 (Calbiochem) and factors B and D in the presence of NiCl2. The C3 convertase on the cells was then allowed to decay by incubating ES-C3b,Bb with various concentrations of sCCPH or its mutants for 10 min at 37°C, and the activity of the remaining enzyme was assessed by measuring the cell lysis following incubation with EDTA-sera for 30 min at 37°C (35, 37). The data obtained were normalized by considering the lysis that occurred in the absence of an inhibitor as 100% lysis.Although sCCPH is known to possess limited AP C3 convertase DAA, we sought to determine whether this limited activity is localized in a specific region or the full-length protein. To measure the AP DAA, the C3 convertase C3b,Bb was formed on the sheep erythrocytes and incubated with sCCPH or with each of its deletion mutants. The decay of the AP C3 convertase was assessed by adding EDTA sera and measuring hemolysis. Although the full-length protein displayed a limited AP C3 convertase, none of the deletion mutants exhibited any activity (Fig. (Fig.44).Inactivation of C3 convertases by the RCA proteins, owing to their cofactor and decay activities, requires interaction of these proteins with C3b and C4b. The ligand binding activity of the RCA proteins, however, does not always correlate with their cofactor and decay activities (12, 34), as apart from ligand binding, cofactor activity involves interaction of the RCA protein with factor I (40), and decay activity involves interaction of the RCA protein with C2a or Bb (22, 25). In order to determine whether cofactor and decay activity data of sCCPH and the various mutants correlate with the ligand binding data, we measured binding of these proteins to C3b and C4b by using a surface plasmon resonance-based assay (38). As observed earlier (38), sCCPH displayed higher affinity for C4b than for C3b (Fig. (Fig.55 and Table Table1).1). When we measured binding of various deletion mutants to C3b and C4b, only SCR2-4 showed binding to C3b, and SCR1-3 showed binding to C4b (Fig. (Fig.5).5). However, there were reductions of about 16- and 14-fold in the affinities of these deletion mutants for C3b and C4b, respectively, compared to that for sCCPH (Table (Table1),1), suggesting that all the four domains contribute to binding to C3b and C4b. Because most of the deletion mutants that displayed complement regulatory activities possessed negligible binding to C3b and C4b, it is clear that binding of the mutants does not correlate with their cofactor and decay activities. It is likely that during cofactor activity, interaction of the mutants with C3b and C4b is stabilized by the interaction of factor I with C3b/C4b and the mutants. Similarly, during DAAs, the mutants may possess better affinity for the convertases than their subunits C3b and C4b. Consistent with this argument, decay-accelerating factor has previously been shown to bind to CP C3 convertase with 1,000-fold higher affinity than to C4b (33).Open in a separate windowFIG. 5.Binding of sCCPH and its mutants to C3b and C4b. Binding was determined by a surface plasmon resonance-based assay (38). Sensograms were generated by immobilizing biotinylated C3b (1,200 response units [RUs]) and C4b (940 RUs) on streptavidin chips (Sensor Chip SA; Biacore AB; additional RUs of C3b [∼6,000 RUs] were deposited by forming AP C3 convertase on the chip and flowing native C3 [14]) and injecting sCCPH or its mutants in PBS-T (10 mM sodium phosphate and 145 mM NaCl, pH 7.4, containing 0.05% Tween 20) over the chip. Flow cells immobilized with bovine serum albumin-biotin (Sigma) served as control flow cells. (Left panels) Binding of sCCPH and its various mutants to C3b (top) and C4b (bottom). The sensograms were generated by injecting 500 nM and 2 μM of sCCPH and its various mutants over C3b and C4b chips, respectively. (Middle panels) Sensogram overlay for the interaction between sCCPH and C3b (top) or sCCPH and C4b (bottom). (Right panels) Sensogram overlay for the interaction between SCR2-4 and C3b (top) and SCR1-3 and C4b (bottom). The concentrations of proteins injected are indicated at the right of the sensograms. The solid lines in the top middle and top right panels represent the global fitting of the data to a 1:1 Langmuir binding model with a drifting baseline (A + B ↔ AB; Biaevaluation 4.1). The small arrows in the bottom middle and right panels indicate the time points used for evaluating the steady-state affinity data.

TABLE 1.

Kinetic and affinity data for the interactions of sCCPH and the deletion mutants with human complement proteins C3b and C4ba
LigandAnalytekd (1/s)/ka (1/m · s)SE (kd/ka)KD (m)χ2
C3bsCCPH4.6 × 10−3/2064.41 × 10−5/11.32.23 × 10−52.02b
C4bsCCPHNANA3.51 × 10−71.69c
C3bSCR2-40.0542/1564.74 × 10−4/12.43.48 × 10−41.63b
C4bSCR1-3NANA4.9 × 10−63.27c
Open in a separate windowaNA, not applicable; ka, association rate constant; kd, dissociation rate constant; KD, equilibrium rate constant; SE, standard error.bData were calculated by global fitting to a 1:1 Langmuir binding model with a drifting baseline (BIAevaluation 4.1).cData did not fit the 1:1 model and were calculated by steady-state analysis (BIAevaluation 4.1).The presence of SCR domains is not restricted to complement regulators, as SCR domains are also present in other complement proteins (e.g., C1r, C1s, MASP-1, MASP-2, factor B, C2, C6, and C7) and noncomplement proteins (e.g., β2-GPI, interleukin-2 and -15 receptors, GABAB receptor type 1a, E-selectin, brevican, CSMD-1, and polydom) (41). The SCR domains are always present as a pair or more, and the presence of a single SCR domain in proteins is rare (e.g., interleukin-15R and brevican). Further, data obtained thus far from domain mapping studies indicate that a minimum of two successive SCR domains are required for imparting any function. Together, these findings led to a paradigm: a two-SCR structure is the smallest basic structural unit required for exhibiting any function (44). In the present study, data obtained for HVS sCCPH elucidate for the first time that a single SCR domain (SCR2) is able to impart factor I cofactor activities as well as DAA. Therefore, clearly, the current belief regarding the requirement of multiple domains for displaying any functional activity requires revision. We would like to point out here that though earlier studies of viral complement regulators have used comparable molar excess of regulators for domain mapping studies, similar studies performed for human complement regulators utilized 5- to 50-fold less molar excess of regulators than the present study. Thus, it is likely that single domains in human complement regulators too may possess the complement regulatory activities.In summary, our findings demonstrate that though three SCR domains of HVS CCPH are necessary for displaying the optimum complement regulatory activities, a single domain is sufficient to impart the various complement regulatory activities. These data therefore point out that sequence variations in herpesviral complement regulators have resulted in a notable difference in domain requirements for the functional activities in these proteins.  相似文献   
85.
Protein transduction domains (PTDs) have been shown to cross the biological cell membranes efficiently through a receptor and energy independent mechanism. Because of its ease in membrane transducing ability, PTDs could be used as a gene delivery vector. Since we already have shown that purified Hoxc8 homeoprotein has the ability to cross the cellular membrane, we analyzed the possibility of the third helix of the Hoxc8 homeodomain as a useful gene delivery vector. For that purpose, a 16-aa long synthetic oligopeptide Hoxc8 Protein Transduction Domain (HPTD) was chemically synthesized and then tested to see whether the HPTD could form a complex with DNA or not. Gel retardation analysis revealed that the HPTD interacts with plasmid DNA efficiently but failed to transfer the DNA into the cells. However, HPTD can enhance the efficiency of gene transfer in combination with Lipofectamine which doubled the gene transfer rate into COS-7 cells compared with the DNA/Lipofectamine control. An MTT assay indicated that the amount of HPTD used in the complex for the transfection did not show any cytotoxicty in COS-7 cells. The TEM studies showed compact particle formation in the presence of HPTD. These results indicate that the HPTD could be a good candidate adjuvant molecule to enhance the gene transfer efficiency of Lipofectamine in eukaryotic cells.  相似文献   
86.
Post-proline cleaving peptidases are promising therapeutic targets for neurodegenerative diseases, psychiatric conditions, metabolic disorders, and many cancers. Prolyl oligopeptidase (POP; E.C. 3.4.21.26) and fibroblast activation protein α (FAP; E.C. 3.4.24.B28) are two post-proline cleaving endopeptidases with very similar substrate specificities. Both enzymes are implicated in numerous human diseases, but their study is impeded by the lack of specific substrate probes. We interrogated a combinatorial library of proteolytic substrates and identified novel and selective substrates of POP and FAP. These new sequences will be useful as probes for fundamental biochemical study, scaffolds for inhibitor design, and triggers for controlled drug delivery.  相似文献   
87.
Queens of the primitively eusocial wasp Ropalidia marginata are behaviourally docile and maintain their reproductive monopoly by rubbing their abdomen and applying a pheromone to the nest surface. We argued that the queen should be overthrown if she is prevented from applying her pheromone. To test this prediction we introduced the queen and her workers into a cage without the nest, thereby removing the substrate for pheromone application. Contrary to our expectation, queens maintained their status (in six out of seven experiments), by continuing to rub their abdomens (and presumably applying pheromone) to cage walls even in absence of the nest. Such attempts to apply pheromone to the cage are expected to be relatively inefficient as the surface area would be very large. Thus we found that the queens were aggressively challenged by the workers and they in turn reciprocated with aggression toward their workers. Such aggressive queen-worker interactions are almost nonexistent in natural colonies and were also not recorded in the control experiments (with nests present). Our results reinforce the idea that pheromone helps R. marginata queens maintain their status and more importantly, they also show that, if necessary, queens can also supplement the pheromone with physical aggression.  相似文献   
88.
The adipocyte hormone, leptin has been demonstrated to have profibrogenic actions in vitro and in animal models. However, no correlation was found between plasma leptin levels and fibrosis stage in humans. Thus, our aim was to study whether soluble leptin receptor (SLR) or free leptin index (FLI; calculated as the ratio of leptin to SLR), may correlate better with the features of metabolic syndrome and with the histological grade and stage of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). We studied a population (n = 104) of morbidly obese patients undergoing bariatric surgery. Data including BMI, type 2 diabetes mellitus, hypertension, and hyperlipidemia were obtained. Plasma fasting leptin and SLR, fasting glucose and insulin were measured, and homeostasis model of assessment insulin resistance (HOMAIR) index and FLI were calculated. All patients had intraoperative liver biopsies. Leptin levels correlated with the BMI. The multiple regression analysis indicated that increasing HOMA and decreasing FLI were predictors of steatosis in the liver (P < 0.0003). SLR levels were positively correlated with the presence of diabetes mellitus and the stage of fibrosis. In conclusion, increased SLR levels in morbidly obese patients with diabetes are correlated with the stage of liver fibrosis, and may reflect progressive liver disease.  相似文献   
89.
Deletion of single genes from expanded gene families in bacterial genomes often does not elicit a phenotype thus implying redundancy or functional non-essentiality of paralogous genes. The molecular mechanisms that facilitate evolutionary maintenance of such paralogs despite selective pressures against redundancy remain mostly unexplored. Here, we investigate the evolutionary, genetic, and functional interaction between the Helicobacter pylori cysteine-rich paralogs hcpG and hcpC in the context of H. pylori infection of cultured mammalian cells. We find that in natural H. pylori populations both hcpG and hcpC are maintained by positive selection in a dual genetic relationship that switches from complete redundancy during early infection, whereby ΔhcpC or ΔhcpG mutants themselves show no growth defect but a significant growth defect is seen in the ΔhcpC,ΔhcpG double mutant, to quantitative redundancy during late infection wherein the growth defect of the ΔhcpC mutant is exacerbated in the ΔhcpC,ΔhcpG double mutant although the ΔhcpG mutant itself shows no defect. Moreover, during early infection both hcpG and hcpC are essential for optimal translocation of the H. pylori HspB/GroEL chaperone, but during middle-to-late infection hcpC alone is necessary and sufficient for HspB/GroEL translocation thereby revealing the lack of functional compensation among paralogs. We propose that evolution of context-dependent differences in the nature of genetic redundancy, and function, between hcpG and hcpC may facilitate their maintenance in H. pylori genomes, and confer robustness to H. pylori growth during infection of cultured mammalian cells.  相似文献   
90.
Volatile Eu complexes, namely Eu(TTA)3Phen, Eu(x)Y(1‐x)(TTA)3 Phen; Eu(x)Tb(1‐x)(TTA)3Phen; Eu, europium; Y, yttrium; Tb, Terbium; TTA, thenoyltrifluoroacetone; and Phen, 1,10 phenanthroline were synthesized by maintaining stichiometric ratio. Various characterization techniques such as X‐ray diffraction (XRD), photoluminescence (PL) and thermo gravimetric analysis/differential thermal analysis (TGA/DTA) were carried out for the synthesized complexes. Diffractograms of all the synthesized complexes showed well‐resolved peaks, which revealed that pure and doped organic Eu3+ complexes were crystalline in nature. Of all the synthesized complexes, Eu0.5 Tb0.5(TTA)3Phen showed maximum peak intensity, while the angle of maximum peak intensity for all complexes was almost the same with slightly different d‐values. A prominent sharp red emission line was observed at 611 nm when excited with light at 370 nm. It was observed that the intensity of red emissions increased for doped europium complexes Eu(x)Y(1‐x)(TTA)3Phen and Eu(x)Tb(1‐x)(TTA)3 Phen, when compared with Eu complexes. Emission intensity increased in the following order: Eu(TTA)3Phen > Eu0.5 Tb0.5(TTA)3Phen > Eu0.4 Tb0.6(TTA)3Phen > Eu0.5Y0.5(TTA)3Phen > Eu0.4Y0.6(TTA)3Phen, proving their potential application in organic light‐emitting diodes (OLEDs). TGA showed that Eu complexes doped in Y3+ and Tb3+ have better thermal stability than pure Eu complex. DTA analysis showed that the melting temperature of Eu(TTA)3 Phen was lower than doped Eu complexes. These measurements infer that all complexes were highly stable and could be used as emissive materials for the fabrication of OLEDs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号