首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   32篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   4篇
  2018年   9篇
  2017年   6篇
  2016年   17篇
  2015年   13篇
  2014年   18篇
  2013年   21篇
  2012年   32篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   24篇
  2007年   19篇
  2006年   18篇
  2005年   12篇
  2004年   20篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有357条查询结果,搜索用时 15 毫秒
101.
MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.  相似文献   
102.
Secretion of microneme proteins is essential to Plasmodium invasion but the molecular composition of these secretory organelles remains poorly defined. Here, we describe the first Plasmodium microneme proteome. Purification of micronemes by subcellular fractionation from cultured ookinetes was confirmed by enrichment of known micronemal proteins and electron microscopy. Quantitation of electron micrographs showed >14‐fold microneme enrichment compared to the intact ookinete, such that micronemes comprised 85% of the identifiable organelles in the fraction. Gel LC‐MS/MS of the most abundant protein constituents of the fraction identified three known micronemal proteins chitinase, CTRP, SOAP, together with protein disulphide isomerase (PDI) and HSP70. Highly sensitive MudPIT shotgun proteomics described a total of 345 proteins in the fraction. M1 aminopeptidase and PDI, the former a recognised target of drug development, were both shown to have a micronemal location by IFA. We further identified numerous proteins with established vesicle trafficking and signaling functions consistent with micronemes being part of a regulated secretory pathway. Previously uncharacterised proteins comprise the largest functional group of the microneme proteome and will include secreted proteins important to invasion.  相似文献   
103.
104.
105.

Background

Burkholderia thailandensis is a non-pathogenic environmental saprophyte closely related to Burkholderia pseudomallei, the causative agent of the often fatal animal and human disease melioidosis. To study B. thailandensis genomic variation, we profiled 50 isolates using a pan-genome microarray comprising genomic elements from 28 Burkholderia strains and species.

Results

Of 39 genomic regions variably present across the B. thailandensis strains, 13 regions corresponded to known genomic islands, while 26 regions were novel. Variant B. thailandensis isolates exhibited isolated acquisition of a capsular polysaccharide biosynthesis gene cluster (B. pseudomallei-like capsular polysaccharide) closely resembling a similar cluster in B. pseudomallei that is essential for virulence in mammals; presence of this cluster was confirmed by whole genome sequencing of a representative variant strain (B. thailandensis E555). Both whole-genome microarray and multi-locus sequence typing analysis revealed that the variant strains formed part of a phylogenetic subgroup distinct from the ancestral B. thailandensis population and were associated with atypical isolation sources when compared to the majority of previously described B. thailandensis strains. In functional assays, B. thailandensis E555 exhibited several B. pseudomallei-like phenotypes, including colony wrinkling, resistance to human complement binding, and intracellular macrophage survival. However, in murine infection assays, B. thailandensis E555 did not exhibit enhanced virulence relative to other B. thailandensis strains, suggesting that additional factors are required to successfully colonize and infect mammals.

Conclusions

The discovery of such novel variant strains demonstrates how unbiased genomic surveys of non-pathogenic isolates can reveal insights into the development and emergence of new pathogenic species.  相似文献   
106.
To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.  相似文献   
107.
108.
109.
The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities. In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivo interactions between eEF3 and eEF1A are critical for protein synthesis.  相似文献   
110.
Proteoglycans (PGs) have been shown to play a key role in the development of many tissues. We have investigated the role of sulfated PGs in early rat lung development by treating cultured tissues with 30 mM sodium chlorate, a global inhibitor of PG sulfation. Chlorate treatment disrupted growth and branching of embryonic day 13 lung explants. Isolated lung epithelium (LgE) migrated toward and invaded lung mesenchyme (LgM), and chlorate irreversibly suppressed this response. Chlorate also inhibited migration of LgE toward beads soaked in FGF10. Chlorate severely decreased branching morphogenesis in tissue recombinants consisting of LgM plus either LgE or tracheal epithelium (TrE) and decreased expression of surfactant protein C gene (SP-C). Chlorate also reduced bone morphogenetic protein-4 expression in cultured tips and recombinants but had no effect on the expression of clara cell 10-kDa protein (CC10), sonic hedgehog (Shh), FGF10, and FGF receptor 2IIIb. Chlorate reduced the growth of LgE in mesenchyme-free culture but did not affect SP-C expression. In contrast, chlorate inhibited both rudiment growth and the induction of SP-C in mesenchyme-free cultured TrE. Treatment of lung tips and tissue recombinants with chondroitinase ABC abolished branching morphogenesis. Chondroitinase also suppressed growth of TrE in mesenchyme-free culture. Chondroitinase treatment, however, had no effect on the induction of SP-C expression in any of these cultures. These results demonstrate the overall importance of sulfated PGs to normal lung development and demonstrate a dynamic role for chondroitin sulfate PGs in embryonic lung growth and morphogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号