首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   37篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   20篇
  2012年   9篇
  2011年   21篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   18篇
  2006年   15篇
  2005年   20篇
  2004年   18篇
  2003年   11篇
  2002年   14篇
  2001年   6篇
  2000年   8篇
  1999年   9篇
  1997年   3篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1974年   3篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1969年   1篇
  1968年   2篇
  1966年   2篇
  1960年   1篇
  1946年   1篇
排序方式: 共有320条查询结果,搜索用时 895 毫秒
131.
We have identified that the collagen helix has the potential to be disruptive to analyses of intrinsically disordered proteins. The collagen helix is an extended fibrous structure that is both promiscuous and repetitive. Whilst its sequence is predicted to be disordered, this type of protein structure is not typically considered as intrinsic disorder. Here, we show that collagen‐encoding proteins skew the distribution of exon lengths in genes. We find that previous results, demonstrating that exons encoding disordered regions are more likely to be symmetric, are due to the abundance of the collagen helix. Other related results, showing increased levels of alternative splicing in disorder‐encoding exons, still hold after considering collagen‐containing proteins. Aside from analyses of exons, we find that the set of proteins that contain collagen significantly alters the amino acid composition of regions predicted as disordered. We conclude that research in this area should be conducted in the light of the collagen helix.  相似文献   
132.
133.
Abstract

The increasing availability of the crystal structures of a variety of complexes of thymidylate synthase1 (TS) and its mutants with nucleotide and folate analogues, has greatly advanced our understanding of the mechanism of catalysis, and the detailed interaction of the enzyme with inhibitors.  相似文献   
134.
135.
Isolated neurons of Helix aspersa were dialyzed and voltage clamped under conditions that isolate the Ca current. The rapid time-dependent run-down, or washout, of Ca current could be slowed by addition of 1 mM EGTA to the dialysis solution. A more effective means of slowing washout was the use of agents that promote protein phosphorylation, such as cAMP, Mg-ATP and the catalytic subunit (CS) of cAMP-dependent protein kinase, along with leupeptin, a tripeptide inhibitor of proteases. In the presence of these agents, no internal EGTA was required to prevent Ca current washout. Thus, during dialysis with 100 microM leupeptin, 7 mM Mg-ATP and 20 micrograms/ml CS, the Ca current remained stable for up to several hours. The rate of Ca-dependent inactivation of the current that occurs during a depolarizing step showed only a small decline during prolonged dialysis. Under these conditions, introduction of 10 microM calmodulin plus 40 micrograms/ml calcineurin, a Ca-calmodulin-dependent phosphatase, caused a significant increase in the rate of Ca current inactivation during a depolarizing step. This increase in rate of inactivation, as well as the original inactivation, was eliminated by introduction of EGTA or replacement of external Ca with Ba, results that are consistent with the ion dependency for activation of calcineurin. When internal ATP was replaced with ATP-gamma-S, a hydrolysis-resistant analogue, the rate of Ca current inactivation slowed, providing further evidence that inactivation involves a dephosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
136.
137.
138.
L-N5-(1-Hydroxyiminoethyl)-ornithine (L-NHIO) and L-N6-(1-hydroxyiminoethyl)-lysine (L-NHIL) were synthesized and tested as potential intermediates in the mechanism-based inactivation of nitric oxide synthase (NOS) by L-N5-iminoethylornithine (L-NIO) and L-N6-iminoethyllysine (L-NIL). Although these compounds were determined to be competitive inhibitors, mechanism-based inactivation was not observed.  相似文献   
139.
Solt I  Magyar C  Simon I  Tompa P  Fuxreiter M 《Proteins》2006,64(3):749-757
Phosphorylation at Ser-133 of the kinase inducible domain of CREB (KID) triggers its binding to the KIX domain of CBP via a concomitant coil-to-helix transition. The exact role of this key event is still puzzling: it does not switch between disordered and ordered states, nor its direct interactions fully account for selectivity. Hence, we reasoned that phosphorylation may shift the conformational preferences of KID towards a binding-competent state. To this end we investigated the intrinsic structural properties of the unbound KID in phosphorylated and unphosphorylated forms by simulated annealing and molecular dynamics simulations. Although helical populations show subtle differences, phosphorylation reduces the flexibility of the turn segment connecting the two helices in the complexed structure and induces a transient structural element that corresponds to its bound conformation. It is stabilized by the pSer-133-Arg-131 interaction, which is absent from the unphosphorylated KID. Diminishing this coupling decreases the 3.1 kcal/mol contribution of pSer-133 to the binding free energy (DeltaGbind) of the phosphorylated KID to KIX by 1.1 kcal/mol, as computed in reference to Ser-133. In a binding competent form of the S133E KID mutant, the contribution of Glu-133 to DeltaGbind is by 1.5 kcal/mol smaller than that of pSer, suggesting that altered structural properties due to pSer --> Glu replacement impair the binding affinity. Thus, we propose that phoshorylation contributes to selectivity not merely by the direct interactions of the phosphate group with KIX, but also by promoting the formation of a transient structural element in the highly conserved turn segment.  相似文献   
140.
In ischemia-reperfusion injuries, elevated calcium and reactive oxygen species (ROS) induce mitochondrial permeability transition (mPT), which plays a pivotal role in mediating damages and cell death. Inhibition of mPT decreases necrotic cell death; however, during reperfusion, the continuous production of ROS may contribute to the temporary opening of the pore and thus the onset of the delayed apoptotic cell death. Based on amiodarone structure, we developed the first SOD-mimetic mPT inhibitor (HO-3538) that can eliminate ROS in the microenvironment of the permeability pore. In isolated mitochondria, HO-3538 inhibited mPT and the release of proapoptotic mitochondrial proteins. It had a ROS scavenging effect and antiapoptotic effect in a cardiomyocyte line and it diminished release of mitochondrial proapoptotic proteins. Furthermore, HO-3538 significantly enhanced the recovery of mitochondrial energy metabolism and functional cardiac parameters; decreased infarct size, lipid peroxidation, and protein oxidation; and suppressed necrotic as well as apoptotic cell death pathways in Langendorff-perfused hearts. In these respects it was somewhat superior to its two constituents, amiodarone and a pyrrol-derivative free radical scavenger. These data suggest that the SOD-mimetic mPT inhibitors are ideal candidates for drug development for the alleviation of postinfarct myocardial injuries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号