首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   10篇
  2014年   7篇
  2013年   8篇
  2012年   17篇
  2011年   23篇
  2010年   15篇
  2009年   8篇
  2008年   12篇
  2007年   6篇
  2006年   13篇
  2005年   12篇
  2004年   7篇
  2003年   2篇
  2002年   9篇
  2001年   6篇
  1999年   3篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1967年   1篇
  1964年   1篇
排序方式: 共有192条查询结果,搜索用时 31 毫秒
31.
32.
The molecular and biochemical mechanism(s) of polyamine (PA) action remain largely unknown. Transgenic tobacco plants overexpressing polyamine oxidase (PAO) from Zea mays exhibited dramatically increased expression levels of Mpao and high 1,3-diaminopropane (Dap) content. All fractions of spermidine and spermine decreased significantly in the transgenic lines. Although Dap was concomitantly generated with H(2)O(2) by PAO, the latter was below the detection limits. To show the mode(s) of H(2)O(2) scavenging, the antioxidant machinery of the transgenics was examined. Specific isoforms of peroxidase, superoxide dismutase and catalase were induced in the transgenics but not in the wild-type (WT), along with increase in activities of additional enzymes contributing to redox homeostasis. One would expect that because the antioxidant machinery was activated, the transgenics would be able to cope with increased H(2)O(2) generated by abiotic stimuli. However, despite the enhanced antioxidant machinery, further increase in the intracellular reactive oxygen species (ROS) by exogenous H(2)O(2), or addition of methylviologen or menadione to transgenic leaf discs, resulted in oxidative stress as evidenced by the lower quantum yield of PSII, the higher ion leakage, lipid peroxidation and induction of programmed cell death (PCD). These detrimental effects of oxidative burst were as a result of the inability of transgenic cells to further respond as did the WT in which induction of antioxidant enzymes was evident soon following the treatments. Thus, although the higher levels of H(2)O(2) generated by overexpression of Mpao in the transgenics, with altered PA homeostasis, were successfully controlled by the concomitant activation of the antioxidant machinery, further increase in ROS was detrimental to cellular functions and induced the PCD syndrome.  相似文献   
33.
Polyamine oxidase (PAO) catalyzes the oxidative catabolism of spermidine and spermine, generating hydrogen peroxide. In wild-type tobacco (Nicotiana tabacum ‘Xanthi’) plants, infection by the compatible pathogen Pseudomonas syringae pv tabaci resulted in increased PAO gene and corresponding PAO enzyme activities; polyamine homeostasis was maintained by induction of the arginine decarboxylase pathway and spermine was excreted into the apoplast, where it was oxidized by the enhanced apoplastic PAO, resulting in higher hydrogen peroxide accumulation. Moreover, plants overexpressing PAO showed preinduced disease tolerance against the biotrophic bacterium P. syringae pv tabaci and the hemibiotrophic oomycete Phytophthora parasitica var nicotianae but not against the Cucumber mosaic virus. Furthermore, in transgenic PAO-overexpressing plants, systemic acquired resistance marker genes as well as a pronounced increase in the cell wall-based defense were found before inoculation. These results reveal that PAO is a nodal point in a specific apoplast-localized plant-pathogen interaction, which also signals parallel defense responses, thus preventing pathogen colonization. This strategy presents a novel approach for producing transgenic plants resistant to a broad spectrum of plant pathogens.  相似文献   
34.
The nickel(II) complexes with the quinolone antibacterial agents oxolinic acid, flumequine, enrofloxacin and sparfloxacin in the presence of the N,N′-donor heterocyclic ligand 2,2′-bipyridylamine have been synthesized and characterized. The quinolones act as bidentate ligands coordinated to Ni(II) ion through the pyridone oxygen and a carboxylato oxygen. The crystal structure of [(2,2′-bipyridylamine)bis(sparfloxacinato)nickel(II)] has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA with [(2,2′-bipyridylamine)bis(flumequinato)nickel(II)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the [Ni(quinolonato)2(2,2′-bipyridylamine)] complexes have been evaluated in comparison to the previously reported Ni(II) quinolone complexes [Ni(quinolonato)2(H2O)2], [Ni(quinolonato)2(2,2′-bipyridine)] and [Ni(quinolonato)2(1,10-phenanthroline)]. The quinolones and their Ni(II) complexes have been tested for their antioxidant and free radical scavenging activity. They have been also tested in vitro for their inhibitory activity against soybean lipoxygenase.  相似文献   
35.
At the core of regenerative medicine lies the expectation of repair or replacement of damaged tissues or whole organs. Donor scarcity and transplant rejection are major obstacles, and exactly the obstacles that stem cell based therapy promises to overcome. These therapies demand a comprehensive understanding of the asymmetric division of stem cells, i.e. their ability to produce cells with identical potency or differentiated cells. It is believed that with better understanding, researchers will be able to direct stem cell differentiation. Here, we describe extraordinary advances in manipulating stem cell fate that show that we need to focus on the centrosome and the centrosome-derived primary cilium. This belief comes from the fact that this organelle is the vehicle that coordinates the asymmetric division of stem cells. This is supported by studies that report the significant role of the centrosome/cilium in orchestrating signaling pathways that dictate stem cell fate. We anticipate that there is sufficient evidence to place this organelle at the center of efforts that will shape the future of regenerative medicine.  相似文献   
36.
37.
The selenophosphate synthetases from several organisms contain a selenocysteine residue in their active site where the Escherichia coli enzyme contains a cysteine. The synthesis of these enzymes, therefore, depends on their own reaction product. To analyse how this self-dependence is correlated with the selenium status, e.g. after recovery from severe selenium starvation, we expressed the gene for the selenocysteine-containing selenophosphate synthetase from Haemophilus influenzae (selD HI) in an E. coliΔselD strain. Gene selD HI gave rise to a selenium-containing gene product and also supported – via its activity – the formation of E. coli selenoproteins. The results provide evidence either for the suppression of the UGASec codon with the insertion of an amino acid allowing the formation of a functional product or for a bypass of the selenophosphate requirement. We also show that the selenocysteine synthesis and the insertion systems of the two organisms are fully compatible despite conspicuous differences in the mRNA recognition motif. Received: 8 July 1997 / Accepted: 3 September 1997  相似文献   
38.
39.
Introduction: The HPV virus accounts for the majority of cervical cancer cases. Although a diagnostic tool (Pap Test) is widely available, cervical cancer incidence still remains high worldwide, and especially in developing countries, attributed to a large extent to suboptimal sensitivities of the Pap test and unavailability of the test in developing countries.

Areas covered: Proteomics approaches have been used in order to understand the HPV virus correlation to cervical cancer pathology, as well as to discover putative biomarkers for early cervical cancer diagnosis and drug mode of action.

Expert commentary: The present review summarizes the latest in vitro and in vivo proteomic studies for the discovery of putative cervical cancer biomarkers and the evaluation of available drugs and treatments.  相似文献   

40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号