首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   34篇
  国内免费   1篇
  2020年   2篇
  2019年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   18篇
  2012年   13篇
  2011年   9篇
  2010年   13篇
  2009年   15篇
  2008年   17篇
  2007年   16篇
  2006年   16篇
  2005年   12篇
  2004年   15篇
  2003年   20篇
  2002年   15篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   12篇
  1991年   3篇
  1990年   2篇
  1989年   13篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1957年   1篇
  1955年   1篇
  1950年   1篇
  1949年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
241.
The critical role of IL-34 in osteoclastogenesis   总被引:1,自引:0,他引:1  
It has been widely believed that the cytokines required for osteoclast formation are M-CSF (also known as CSF-1) and RANKL. Recently, a novel cytokine, designated IL-34, has been identified as another ligand of CSF1R. This study was to explore the biological function, specifically osteoclastogenesis and bone metabolism, of the new cytokine. We produced recombinant mouse IL-34 and found that together with RANKL it induces the formation of osteoclasts both from splenocytes as well as dose-dependently from bone marrow cells in mouse and these cells also revealed bone resorption activity. It also promotes osteoclast differentiation from human peripheral blood mononucleated cells. Finally, we show that systemic administration of IL-34 to mice increases the proportion of CD11b+ cells and reduces trabecular bone mass. Our data indicate that IL-34 is another important player in osteoclastogenesis and thus may have a role in bone diseases. Strategies of targeting CSF1/CSF1R have been developed and some of them are already in preclinical and clinical studies for treatment of inflammatory diseases. Our results strongly suggest the need to revisit these strategies as they may provide a new potential pharmaceutical target for the regulation of bone metabolism in addition to their role in the treatment of inflammatory diseases.  相似文献   
242.

Background

There is some evidence linking sub-optimal prenatal development to an increased risk of disability pension (DP). Our aim was to investigate whether body size at birth was associated with transitioning into all-cause and cause-specific DP during the adult work career.

Methods

10 682 people born in 1934–44 belonging to the Helsinki Birth Cohort Study had data on birth weight extracted from birth records, and on time, type and reason of retirement between 1971 and 2011 extracted from the Finnish Centre for Pensions.

Results

Altogether 21.3% transitioned into DP during the 40-year follow-up, mainly due to mental disorders, musculoskeletal disorders and cardiovascular disease. Average age of transitioning into DP was 51.3 (SD 8.4) for men and 52.2 (SD 7.6) for women. Cohort members who did not transition into DP retired 10 years later on average. Among men, higher birth weight was associated with a lower hazard of transitioning into DP, adjusted hazard ratio (HR) being 0.94 (95% confidence interval [CI] 0.88–0.99 for 1 SD increase in birth weight). For DP due to mental disorders the adjusted HR was 0.90, 95% CI 0.81, 0.99. A similar but non-significant trend was found for DP due to cardiovascular disease. Among women there were no associations between body size at birth and all-cause DP (p for interaction gender*birth weight on DP p = 0.007).

Conclusions

Among men disability pension, particularly due to mental disorders, may have its origins in prenatal development. Given that those who retire due to mental health problems are relatively young, the loss to the workforce is substantial.  相似文献   
243.

Background

While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point.

Principal Findings

A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected.

Conclusions/Significance

A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut.  相似文献   
244.

Background

Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear.

Methods/Principal Findings

We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (P K+/P Cl−∼0.31), while the other two types of channels are slightly selective for cations (P K+/P Cl− ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel''s pore.

Conclusions/Significance

These results indicate that the membrane of glycosomes apparently contains several types of pore-forming channels connecting the glycosomal lumen and the cytosol.  相似文献   
245.
Medusae are important members of marine food webs, but are rare in lakes. In one of the largest lakes in the world, Lake Tanganyika, a small medusa (Limnocnida tanganyicae) is a prominent component of zooplankton. We used field and laboratory methods to study the ecological role of Lake Tanganyika medusae, which occasionally reached high local densities in the whole epilimnion. The largest individuals showed low amplitude, diel vertical migration which minimized their exposure to harmful UV radiation and also may be important for picocyanobacteria regularly present in the medusae. The endosymbiotic picocyanobacteria differed morphologically among medusae and were predominantly one Lake Biwa type Cyanobium sp. that typically was abundant in the water column. Under light, some medusae were net primary producers. Although nitrogen stable isotopic ratios indicated that the free-living cyanobacteria were nitrogen-fixers, the picocyanobacteria in medusae obtained nitrogen predominantly from their host. Stable isotopic ratios of carbon and nitrogen further suggested that copepods were the most likely prey for the medusae. Lake Tanganyika medusae apparently base their metabolism both on animal and plant sources, with possible internal cycling of nutrients; however, the role of picocyanobacteria gardening in the Lake Tanganyika ecosystem and its medusae requires quantification.  相似文献   
246.
Apicomplexan parasites are responsible for high impact human diseases such as malaria, toxoplasmosis, and cryptosporidiosis. These obligate intracellular pathogens are dependent on both de novo lipid biosynthesis as well as the uptake of host lipids for biogenesis of parasite membranes. Genome annotations and biochemical studies indicate that apicomplexan parasites can synthesize fatty acids via a number of different biosynthetic pathways that are differentially compartmentalized. However, the relative contribution of each of these biosynthetic pathways to total fatty acid composition of intracellular parasite stages remains poorly defined. Here, we use a combination of genetic, biochemical, and metabolomic approaches to delineate the contribution of fatty acid biosynthetic pathways in Toxoplasma gondii. Metabolic labeling studies with [(13)C]glucose showed that intracellular tachyzoites synthesized a range of long and very long chain fatty acids (C14:0-26:1). Genetic disruption of the apicoplast-localized type II fatty-acid synthase resulted in greatly reduced synthesis of saturated fatty acids up to 18 carbons long. Ablation of type II fatty-acid synthase activity resulted in reduced intracellular growth that was partially restored by addition of long chain fatty acids. In contrast, synthesis of very long chain fatty acids was primarily dependent on a fatty acid elongation system comprising three elongases, two reductases, and a dehydratase that were localized to the endoplasmic reticulum. The function of these enzymes was confirmed by heterologous expression in yeast. This elongase pathway appears to have a unique role in generating very long unsaturated fatty acids (C26:1) that cannot be salvaged from the host.  相似文献   
247.
Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for 'bulky' solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel - mammalian Pxmp2 protein - have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   
248.
Antibiotic use is considered among the most severe causes of disturbance to children’s developing intestinal microbiota, and frequently causes adverse gastrointestinal effects ranging from mild and transient diarrhoea to life-threatening infections. Probiotics are commonly advocated to help in preventing antibiotic-associated gastrointestinal symptoms. However, it is currently unknown whether probiotics alleviate the antibiotic-associated changes in children’s microbiota. Furthermore, it is not known how long-term probiotic consumption influences the developing microbiota of children. We analysed the influence of long-term Lactobacillus rhamnosus GG intake on preschool children’s antibiotic use, and antibiotic-associated gastrointestinal complaints in a double blind, randomized placebo-controlled trial with 231 children aged 2–7. In addition, we analysed the effect of L. rhanmosus GG on the intestinal microbiota in a subset of 88 children. The results show that long-term L. rhamnosus GG supplementation has an influence on the composition of the intestinal microbiota in children, causing an increase in the abundance of Prevotella, Lactococcus, and Ruminococcus, and a decrease in Escherichia. The treatment appeared to prevent some of the changes in the microbiota associated with penicillin use, but not those associated with macrolide use. The treatment, however, did reduce the frequency of gastrointestinal complaints after a macrolide course. Finally, the treatment appeared to prevent certain bacterial infections for up to 3 years after the trial, as indicated by reduced antibiotic use.Trial Registration: ClinicalTrials.gov NCT01014676  相似文献   
249.
Two on-line probes for biomass measurement in bioreactor cultivations were evaluated. One probe is based on near infrared (NIR) light absorption and the other on dielectric spectroscopy. The probes were used to monitor biomass production in cultivations of several different microorganisms. Differences in NIR probe response compared to off-line measurement methods revealed that the most significant factor affecting the response was cell shape. The NIR light absorption method is more developed and reliable for on-line in situ biomass estimation than dielectric spectroscopy. The NIR light absorption method is, however, of no significant use, when the cultivation medium is not clear, and especially in processes using adsorbents or solid matrix for the microorganism to grow on. The possibilities offered by dielectric spectroscopy are impressive, but the on-line probe technology needs to be improved.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号