首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   81篇
  628篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   5篇
  2018年   10篇
  2017年   8篇
  2016年   5篇
  2015年   10篇
  2014年   17篇
  2013年   22篇
  2012年   35篇
  2011年   34篇
  2010年   22篇
  2009年   16篇
  2008年   33篇
  2007年   34篇
  2006年   19篇
  2005年   17篇
  2004年   19篇
  2003年   26篇
  2002年   15篇
  2001年   19篇
  2000年   19篇
  1999年   20篇
  1998年   10篇
  1997年   9篇
  1996年   7篇
  1995年   10篇
  1994年   4篇
  1993年   4篇
  1992年   10篇
  1991年   12篇
  1990年   12篇
  1989年   19篇
  1988年   9篇
  1987年   5篇
  1986年   11篇
  1985年   8篇
  1984年   10篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1969年   3篇
  1968年   3篇
  1967年   4篇
  1966年   5篇
排序方式: 共有628条查询结果,搜索用时 15 毫秒
11.
Experimental residual dipolar couplings (RDCs) in combination with structural models have the potential for accelerating the protein backbone resonance assignment process because RDCs can be measured accurately and interpreted quantitatively. However, this application has been limited due to the need for very high-resolution structural templates. Here, we introduce a new approach to resonance assignment based on optimal agreement between the experimental and calculated RDCs from a structural template that contains all assignable residues. To overcome the inherent computational complexity of such a global search, we have adopted an efficient two-stage search algorithm and included connectivity data from conventional assignment experiments. In the first stage, a list of strings of resonances (CA-links) is generated via exhaustive searches for short segments of sequentially connected residues in a protein (local templates), and then ranked by the agreement of the experimental 13Cα chemical shifts and 15N-1H RDCs to the predicted values for each local template. In the second stage, the top CA-links for different local templates in stage I are combinatorially connected to produce CA-links for all assignable residues. The resulting CA-links are ranked for resonance assignment according to their measured RDCs and predicted values from a tertiary structure. Since the final RDC ranking of CA-links includes all assignable residues and the assignment is derived from a “global minimum”, our approach is far less reliant on the quality of experimental data and structural templates. The present approach is validated with the assignments of several proteins, including a 42 kDa maltose binding protein (MBP) using RDCs and structural templates of varying quality. Since backbone resonance assignment is an essential first step for most of biomolecular NMR applications and is often a bottleneck for large systems, we expect that this new approach will improve the efficiency of the assignment process for small and medium size proteins and will extend the size limits assignable by current methods for proteins with structural models.  相似文献   
12.
In the analysis of human movement, researchers often sum individual joint kinetics to obtain a single measure of lower extremity function. The extent to which these summed measures relate to the mechanical objectives of the task has not been formally validated. The criterion validity of these measures was established with comparisons to the mechanical objective of two multiple-joint tasks. For the Work task 18 participants performed a loaded barbell squat using 4 resistances while instrumented for biomechanical analysis. For the Power they performed 2 predetermined amounts of work at both self-selected and fast speeds. Using inverse dynamics techniques, the peak net joint moment (PM) was calculated bilaterally in the sagittal plane at the ankle, knee, and hip and was summed into a single measure. This measure was correlated with the task objectives using simple linear regression. Similar procedures were used for the average net joint moment (AM), peak (PP), and average (AP) net joint moment power, and the net joint moment impulse (IM) and work (IP). For the Work task all 6 measures were significantly correlated with the task objective, but only AM, PM, and IP had correlation coefficients above 0.90. For the Power task, IM was not significantly correlated with the task objective, and only AP had a correlation coefficient above 0.90. These findings indicate that the validity of summing individual kinetic measures depends on both the measure chosen and the mechanical objective of the task.  相似文献   
13.
R Gysin  B Yost  S D Flanagan 《Biochemistry》1986,25(6):1271-1278
Creatine kinase, actin, and nu 1 are three proteins of Mr 43 000 associated with membranes from electric organ highly enriched in nicotinic acetylcholine receptor. High levels of creatine kinase are required to maintain adequate ATP levels, while actin may play a role in maintaining the synaptic cytoskeleton. Previous investigations have prompted the conclusion that postsynaptic specializations at the receptor-enriched membrane domains in electroplax contain the brain form of creatine kinase rather than the form of creatine kinase predominantly found in muscle. We have examined this conclusion by purifying Torpedo brain creatine kinase to virtual homogeneity in order to examine its immunochemical, molecular, and electrophoretic properties. On the basis of immunological cross-reactivity and isozyme analysis, the receptor-associated creatine kinase is identified to be of the muscle type. When the molecular characteristics of Torpedo brain and muscle creatine kinase are compared, the brain enzyme is positioned at a more basic pH during chromatofocusing and on two-dimensional gel electrophoresis (pI = 7.5-7.9). Furthermore, electrophoretic mobilities of the brain and muscle forms of creatine kinase differ in sodium dodecyl sulfate electrophoresis: the brain isozyme of creatine kinase has lower apparent molecular weight (Mr 41 000) when compared with the muscle enzyme (Mr 43 000). On the basis of the results of our current investigations, the hypothesis that the brain isozyme of creatine kinase is a component of the postsynaptic specializations of the Torpedo californica electroplax must be abandoned. Recent sequence data have established close homology between Torpedo and mammalian muscle creatine kinases. On the basis of electrophoretic criteria, our results indicate that a lower degree of homology exists between the brain isozymes.  相似文献   
14.
The physiological role of chloroplastic carbonic anhydrase (CA) was examined by antisense suppression of chloroplastic CA (on average 8% of wild type) in Nicotiana tabacum. Photosynthetic gas-exchange characteristics of low-CA and wild-type plants were measured concurrently with short-term, on-line stable isotope discrimination at varying vapor pressure deficit (VPD) and light intensity. Low-CA and wild-type plants were indistinguishable in the responses of assimilation, transpiration, stomatal conductance, and intercellular CO2 concentration to changing VPD or light intensity. At saturating light intensity, low-CA plants had lower discrimination against 13CO2 than wild-type plants by 1.2 to 1.8[per mille (thousand) sign]. Consequently, tissue of the low-CA plants was higher in 13C than the control plants. It was calculated that low-CA plants had chloroplast CO2 concentrations 13 to 22 [mu]mol mol-1 lower than wild-type plants. Discrimination against C18O16O in low-CA plants was 20% of that of the wild type, confirming a role of chloroplastic CA in the mechanism of discrimination against C18O16O ([delta]C18O16O). As VPD increased, stomatal closure caused a reduction in chloroplastic C02 concentration, and since VPD and chloroplastic CO2 concentration act in opposing directions on [delta]C18O16O, no effect of VPD was seen on [delta]C18O16O.  相似文献   
15.
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.

  相似文献   
16.
For many taxa, including isomorphic haplodiplontic macroalgae, determining sex and ploidy is challenging, thereby limiting the scope of some population demographic and genetic studies. Here, we used double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq) to identify sex‐linked molecular markers in the widespread red alga Agarophyton vermiculophyllum. In the ddRAD‐seq library, we included 10 female gametophytes, 10 male gametophytes, and 16 tetrasporophytes from one native and one non‐native site (N = 40 gametophytes and N = 32 tetrasporophytes total). We identified seven putatively female‐linked and 19 putatively male‐linked sequences. Four female‐ and eight male‐linked markers amplified in all three life cycle stages. Using one female‐ and one male‐linked marker that were sex‐specific, we developed a duplex PCR and tested the efficacy of this assay on a subset of thalli sampled at two sites in the non‐native range. We confirmed ploidy based on the visual observation of reproductive structures and previous microsatellite genotyping at 10 polymorphic loci. For 32 vegetative thalli, we were able to assign sex and confirm ploidy in these previously genotyped thalli. These markers will be integral to ongoing studies of A. vermiculophyllum invasion. We discuss the utility of RAD‐seq over other approaches previously used, such as RAPDs (random amplified polymorphic DNA), for future work designing sex‐linked markers in other haplodiplontic macroalgae for which genomes are lacking.  相似文献   
17.
Latexin, the only known mammalian carboxypeptidase inhibitor, has no detectable sequence similarity with plant and parasite inhibitors, but it is related to a human putative tumor suppressor protein, TIG1. Latexin is expressed in the developing brain, and we find that it plays a role in inflammation, as it is expressed at high levels and is inducible in macrophages in concert with other protease inhibitors and potential protease targets. The crystal structure of mouse latexin, solved at 1.83 A resolution, shows no structural relationship with other carboxypeptidase inhibitors. Furthermore, despite a lack of detectable sequence duplication, the structure incorporates two topologically analogous domains related by pseudo two-fold symmetry. Surprisingly, these domains share a cystatin fold architecture found in proteins that inhibit cysteine proteases, suggesting an evolutionary and possibly functional relationship. The structure of the tumor suppressor protein TIG1 was modeled, revealing its putative membrane binding surface.  相似文献   
18.
19.
Microsomal triglyceride transfer protein (Mtp) inhibitors represent a novel therapeutic approach to lower circulating LDL cholesterol, although therapeutic development has been hindered by the observed increase in hepatic triglycerides and liver steatosis following treatment. Here, we used small interfering RNAs (siRNA) targeting Mtp to achieve target-specific silencing to study this phenomenon and to determine to what extent liver steatosis is induced by changes in Mtp expression. We observed that Mtp silencing led to a decrease in many genes involved in hepatic triglyceride synthesis. Given the role of diacylglycerol O-acyltransferase 2 (Dgat2) in regulating hepatic triglyceride synthesis, we then evaluated whether target-specific silencing of both Dgat2 and Mtp were sufficient to attenuate Mtp silencing-induced liver steatosis. We showed that the simultaneous inhibition of Dgat2 and Mtp led to a decrease in plasma cholesterol and a reduction in the accumulation of hepatic triglycerides caused by the inhibition of Mtp. Collectively, these findings provide a proof-of-principle for a triglyceride synthesis/Mtp inhibitor combination and represent a potentially novel approach for therapeutic development in which targeting multiple pathways can achieve the desired response.  相似文献   
20.
Drawing from social contract theory, we explore how some adolescent Arab immigrants' (n = 99) sensitivity to the image of their ethnic group as enemies of America colors their interpretation of the social contract. Analyses of data collected in 1997 reveal that those youth who reported that the American media portray Arab people and nations as enemies of the United States are more attuned to personal experiences of prejudice based on their ethnic identity and are more dubious that the tenets of the social contract apply equally across groups. Negative images of Arab Americans were well in place prior to September 11, 2001, a pivotal moment that altered the lives of Arab Americans as well as the discourse on immigration and citizenship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号