排序方式: 共有46条查询结果,搜索用时 7 毫秒
41.
Dry matter production and distribution of zinc in bread and durum wheat genotypes differing in zinc efficiency 总被引:5,自引:0,他引:5
I. Cakmak N. Sari H. Marschner M. Kalayci A. Yilmaz S. Eker K. Y. Gülüt 《Plant and Soil》1996,180(2):173-181
Six bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona, ES 91-12, ES-14 and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes were grown under controlled environmental conditions in nutrient solution for 20 days to study the effect of varied supply of Zn (0 to 1 µM) on Zn deficiency symptoms in shoots, root and shoot dry matter production, and distribution of Zn in roots and shoots.Visual Zn deficiency symptoms, such as whitish-brown lesions on leaves, appeared rapidly and severly in durum wheats, particularly in Kiziltan-91 and Durati. Among the durum wheats, BDMM-19 was less affected by Zn deficiency, and among the bread wheats Kiraç-66, ES 91-12, Aroona and Gerek-79 were less affected than ES-14 and Kirkpinar.Under Zn deficiency, shoot dry matter production was decreased in all genotypes, but more distinctly in durum wheat genotypes. Despite severe decreases in shoot growth, root growth of all genotypes was either not affected or even increased by Zn deficiency. Correspondingly, shoot/root dry weight ratios were lower in Zn-deficient than in Zn-sufficient plants, especially in durum wheat genotypes.The distinct differences among the genotypes in sensitivity to Zn deficiency were closely related with the Zn content (Zn accumulation) per shoot but not with the Zn concentration in the shoot dry matter. On average, genotypes with lesser deficiency symptoms contained about 42% more Zn per shoot than genotypes with severe deficiency symptoms. In contrast to shoots, the Zn content in roots did not differ between genotypes. Shoot/root ratios of total Zn content were therefore greater for genotypes with lesser deficiency symptoms than for genotypes with severe deficiency symptoms (i.e. all durum wheat genotypes).The results suggest that the enhanced capacity of genotypes for Zn uptake and translocation from roots to shoot meristems under deficient Zn supply might be the most important factor contributing to Zn efficiency in wheat genotypes. The results also demonstrate that under severe Zn deficiency, Zn concentration in the shoot dry matter is not a suitable parameter for distinguishing wheat genotypes in their sensitivity to Zn deficiency. 相似文献
42.
43.
44.
45.
46.
RB Marchase 《The Journal of cell biology》1977,75(1):237-257
The preferential adhesion of chick neural retina cells to surfaces of intact optic tecta has been investigated biochemically. The study uses a collection assay in which single cells from either dorsal or ventral halves of neural retain adhere preferentially to ventral or dorsal halves of optic tecta respectively. The data presented support the following conclusions: (a) The adhesion of ventral retina to dorsal tecta seems to depend on proteins located on ventral retina and on terminal β-N-acetylgalactosamine residues on dorsal tecta. (b) The adhesion of dorsal retina to ventral tecta seems to depend on proteins located on ventral tecta and on terminal β- N-acetylgalactosamine residues on dorsal retina. (c) A double gradient model for retinotectal adhesion along the dorsoventral axis is consistent with the data presented. The model utilizes only two complementary molecules. The molecule suggested to be concentrated dorsally in both retina and tectum seems to require terminal β-N-acetylgalactosamine residues for adhesion. Its activity is not affected by protease. A molecule fitting these qualifications, the ganglioside GM(2), could not be detected in a gradient, but lecithin vesicles containing GM(2) adhered preferentially to ventral tectal surfaces. The second molecule, concentrated ventrally in both retina and tectum, is a protein and seems capable of binding terminal β-N- acetylgalactosamine residues. One enzyme, UDP-galactose:GM(2) galactosyltransferase, has been found to be more concentrated in ventral retina than dorsal, but only by 30 percent. 相似文献