首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   9篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   10篇
  2012年   5篇
  2011年   7篇
  2010年   7篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   9篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
61.
Efficient bacterial recombinational DNA repair involves rapid cycles of RecA filament assembly and disassembly. The RecX protein plays a crucial inhibitory role in RecA filament formation and stability. As the broken ends of DNA are tethered during homologous search, RecA filaments assembled at the ends are likely subject to force. In this work, we investigated the interplay between RecX and force on RecA filament formation and stability. Using magnetic tweezers, at single molecular level, we found that Mycobacterium tuberculosis (Mt) RecX could catalyze stepwise de-polymerization of preformed MtRecA filament in the presence of ATP hydrolysis at low forces (<7 pN). However, applying larger forces antagonized the inhibitory effects of MtRecX, and a partially de-polymerized MtRecA filament could re-polymerize in the presence of MtRecX, which cannot be explained by previous models. Theoretical analysis of force-dependent conformational free energies of naked ssDNA and RecA nucleoprotein filament suggests that mechanical force stabilizes RecA filament, which provides a possible mechanism for the observation. As the antagonizing effect of force on the inhibitory function of RecX takes place in a physiological range; these findings broadly suggest a potential mechanosensitive regulation during homologous recombination.  相似文献   
62.
63.
Saccharomyces cerevisiae HOP1, which encodes a component of synaptonemal complex (SC), plays an important role in both gene conversion and crossing over between homologs, as well as enforces meiotic recombination checkpoint control over the progression of recombination intermediates. In hop1Delta mutants, meiosis-specific double-strand breaks (DSBs) are reduced to 10% of the wild-type level, and at aberrantly late times, these DSBs are processed into inter-sister recombination intermediates. However, the underlying mechanism by which Hop1 protein regulates these nuclear events remains obscure. Here we show that Hop1 protein interacts selectively with the Holliday junction, changes its global conformation and blocks the dissolution of the junction by a RecQ helicase. The Holliday junction-Hop1 protein complexes are significantly more stable at higher ionic strengths and molar excess of unlabeled competitor DNA than complexes containing other recombination intermediates. Structural analysis of the Holliday junction using 2-aminopurine fluorescence emission, DNase I footprinting and KMnO4 probing provide compelling evidence that Hop1 protein binding induces significant distortion at the center of the Holliday junction. We propose that Hop1 protein might coordinate the physical monitoring of meiotic recombination intermediates with the process of branch migration of Holliday junction.  相似文献   
64.
Mycobacterium leprae, which has undergone reductive evolution leaving behind a minimal set of essential genes, has retained intervening sequences in four of its genes implicating a vital role for them in the survival of the leprosy bacillus. A single in-frame intervening sequence has been found embedded within its recA gene. Comparison of the M. leprae recA intervening sequence with the known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease. In light of massive gene decay and function loss in the leprosy bacillus, we sought to investigate whether its recA intervening sequence encodes a catalytically active homing endonuclease. Here we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations, Mg2+ or Mn2+. A combination of approaches, including four complementary footprinting assays such as DNase I, copper-phenanthroline, methylation protection, and KMnO4, enhancement of 2-aminopurine fluorescence, and mapping of the cleavage site revealed that PI-MleI binds to cognate DNA flanking its insertion site, induces helical distortion at the cleavage site, and generates two staggered double strand breaks. Taken together, these results implicate that PI-MleI possesses a modular structure with separate domains for DNA target recognition and cleavage, each with distinct sequence preferences. From a biological standpoint, it is tempting to speculate that our findings have implications for understanding the evolution of the LAGLIDADG family of homing endonucleases.Mycobacterium leprae, a Gram-positive rod-shaped bacillus, mostly found in warm tropical countries, is the bacterium that causes leprosy in humans (1). The lack of understanding of the basic biology of M. leprae is believed to be the key factor for the failure of leprosy research to advance. The genome sequence of M. leprae contains 3.27 Mb and has an average G + C content of 57.8%, values much lower than the corresponding values for Mycobacterium tuberculosis, which are ∼4.41 Mb and 65.6% G + C, respectively (2). There are some 1500 genes that are common to both M. leprae and M. tuberculosis. The comparative genome analysis suggests that both species of mycobacteria are derived from a common ancestor and, at one stage, had gene pools of similar size. The downsizing of the M. tuberculosis genome from ∼4.41 to 3.27 Mb of M. leprae would account for the loss of some 1200 protein-coding sequences (1, 3). There is evidence that many of the genes that were present in the genome of M. leprae have truly been lost (1, 3). Comparative genomics of M. leprae with that of M. tuberculosis indicate that the former has undergone substantial downsizing, losing more than 2000 genes, thus suggesting an extreme case of reductive evolution in a microbial pathogen (1). With the availability of the M. leprae genome sequence, using functional genomics approaches, it is possible to identify the gene products, elucidate the mechanism of their action, and identify novel drug targets for rational design of new therapeutic regimens and drugs to treat leprosy.Eubacterial RecA proteins catalyze a set of biochemical reactions that are essential for homologous recombination, DNA repair, restoration of stalled replication forks, and SOS response (47). RecA protein and the process of homologous recombination, which is the main mechanism of genetic exchange, are evolutionarily conserved among a range of organisms (4, 7). Perhaps the most striking development in the field of RecA protein biology was the discovery of an in-frame insertion of an intein-coding sequence in the recA genes of M. tuberculosis and M. leprae (8, 9). In these organisms, RecA is synthesized as a large precursor, which undergoes protein splicing to excise the intein, and the two flanking domains called exteins are ligated together to generate a functionally active RecA protein (9, 10). The milieu in which RecA precursor undergoes splicing differs substantially between M. tuberculosis and M. leprae. M. leprae RecA precursor (79 kDa) undergoes splicing only in mycobacterial species, whereas M. tuberculosis RecA precursor (85 kDa) is spliced efficiently in Escherichia coli as well (911). Intriguingly, M. tuberculosis and M. leprae RecA inteins differ greatly in their size, primary sequence, and location within the recA gene, thereby suggesting two independent origins during evolution (9). The occurrence of inteins in the obligate mycobacterial pathogens, M. tuberculosis, M. leprae, and Mycobacterium microti, suggested that RecA inteins might play a role in mycobacterial functions related to pathogenesis or virulence (9). Previously, we have shown that M. tuberculosis RecA intein (PI-MtuI),2 which contains Walker A motif, displays dual target specificity in the presence of alternative cofactors in an ATP-dependent manner (12, 13).Since their discovery in Saccharomyces cerevisiae (14, 15), a large number of putative homing endonucleases have been found in a diverse range of proteins in all the three domains of life (1619). The majority of inteins possess the protein splicing and homing endonuclease activities (18, 19). Homing endonucleases are a class of diverse rare-cutting enzymes that promote site-specific transposition of their encoding genetic elements by inflicting double-stranded DNA breaks via different cleavage mechanisms in alleles lacking these elements (1823). In addition, these are characterized by their ability to bind long DNA target sites (14–40 bp), and their tolerance of minor sequence changes in their binding region. These have been divided into highly divergent subfamilies on the basis of conserved sequence and structural motifs as follows: LAGLIDADG, GIY-YIG, HNH, His-Cys box, and the more recently identified PD(D/E)XK families (1824). LAGLIDADG homing enzymes, which include the largest family, contain one or two copies of the conserved dodecapeptide motif and utilize an extended protein-DNA interface covering up to 40 bp to acquire their necessary specificity (1822). The LAGLIDADG sequence is a part of the conserved 10- or 12-residue sequence motif defining the family of LAGLIDADG-type homing endonucleases; therefore, it is designated as deca- or dodecapeptide motif (19).Comparison of the M. leprae recA intervening sequence with known intervening sequences indicated that it has the consensus amino acid sequence necessary for being a LAGLIDADG-type homing endonuclease (25, 26). In light of massive gene decay and function loss in the leprosy bacillus, and dissimilarities in size and primary structures among mycobacterial inteins, we sought to investigate whether M. leprae recA intervening sequence encodes a catalytically active homing endonuclease. In this study, we show that the purified M. leprae RecA intein (PI-MleI) binds to cognate DNA and displays endonuclease activity in the presence of alternative divalent cations Mg2+ or Mn2+. Furthermore, using a variety of approaches, we have mapped the positions of PI-MleI binding as well as cleavage in the cognate DNA, thus providing the most comprehensive analysis of PI-MleI. Taken together, these results suggest that PI-MleI possesses a modular structure with functionally separable domains for DNA target recognition and cleavage, each with distinct sequence preferences. These results provide insights into understanding the function and evolution of the family of LAGLIDADG homing endonucleases.  相似文献   
65.
66.

Background

HU a small, basic, histone like protein is a major component of the bacterial nucleoid. E. coli has two subunits of HU coded by hupA and hupB genes whereas Mycobacterium tuberculosis (Mtb) has only one subunit of HU coded by ORF Rv2986c (hupB gene). One noticeable feature regarding Mtb HupB, based on sequence alignment of HU orthologs from different bacteria, was that HupBMtb bears at its C-terminal end, a highly basic extension and this prompted an examination of its role in Mtb HupB function.

Methodology/Principal Findings

With this objective two clones of Mtb HupB were generated; one expressing full length HupB protein (HupBMtb) and another which expresses only the N terminal region (first 95 amino acid) of hupB (HupBMtbN). Gel retardation assays revealed that HupBMtbN is almost like E. coli HU (heat stable nucleoid protein) in terms of its DNA binding, with a binding constant (Kd) for linear dsDNA greater than 1000 nM, a value comparable to that obtained for the HUαα and HUαβ forms. However CTR (C-terminal Region) of HupBMtb imparts greater specificity in DNA binding. HupBMtb protein binds more strongly to supercoiled plasmid DNA than to linear DNA, also this binding is very stable as it provides DNase I protection even up to 5 minutes. Similar results were obtained when the abilities of both proteins to mediate protection against DNA strand cleavage by hydroxyl radicals generated by the Fenton''s reaction, were compared. It was also observed that both the proteins have DNA binding preference for A:T rich DNA which may occur at the regulatory regions of ORFs and the oriC region of Mtb.

Conclusions/Significance

These data thus point that HupBMtb may participate in chromosome organization in-vivo, it may also play a passive, possibly an architectural role.  相似文献   
67.
Kalappa BI  Gusev AG  Uteshev VV 《PloS one》2010,5(11):e13964

Background

The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596.

Methodology/Principal Findings

An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials.

Conclusions

1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5–1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.  相似文献   
68.
69.
Insulin resistance contributes to the pathophysiology of diabetes, obesity, and their cardiovascular complications. Mouse models of these human diseases are useful for gaining insight into pathophysiological mechanisms. The reference standard for measuring insulin sensitivity in both humans and animals is the euglycemic glucose clamp. Many studies have compared surrogate indexes of insulin sensitivity and resistance with glucose clamp estimates in humans. However, regulation of metabolic physiology in humans and rodents differs and comparisons between surrogate indexes and the glucose clamp have not been directly evaluated in rodents previously. Therefore, in the present study, we compared glucose clamp-derived measures of insulin sensitivity (GIR and SI(Clamp)) with surrogate indexes, including quantitative insulin-sensitivity check index (QUICKI), homeostasis model assessment (HOMA), 1/HOMA, log(HOMA), and 1/fasting insulin, using data from 87 mice with a wide range of insulin sensitivities. We evaluated simple linear correlations and performed calibration model analyses to evaluate the predictive accuracy of each surrogate. All surrogate indexes tested were modestly correlated with both GIR and SI(Clamp). However, a stronger correlation between body weight per se and both GIR and SI(Clamp) was noted. Calibration analyses of surrogate indexes adjusted for body weight demonstrated improved predictive accuracy for GIR [e.g., R = 0.68, for QUICKI and log(HOMA)]. We conclude that linear correlations of surrogate indexes with clamp data and predictive accuracy of surrogate indexes in mice are not as substantial as in humans. This may reflect intrinsic differences between human and rodent physiology as well as increased technical difficulties in performing glucose clamps in mice.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号