首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2710篇
  免费   158篇
  2868篇
  2023年   11篇
  2022年   40篇
  2021年   60篇
  2020年   33篇
  2019年   42篇
  2018年   75篇
  2017年   49篇
  2016年   83篇
  2015年   134篇
  2014年   142篇
  2013年   183篇
  2012年   206篇
  2011年   219篇
  2010年   121篇
  2009年   119篇
  2008年   188篇
  2007年   182篇
  2006年   145篇
  2005年   138篇
  2004年   152篇
  2003年   119篇
  2002年   122篇
  2001年   20篇
  2000年   14篇
  1999年   25篇
  1998年   27篇
  1997年   22篇
  1996年   25篇
  1995年   16篇
  1994年   17篇
  1993年   19篇
  1992年   15篇
  1991年   24篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   9篇
  1983年   2篇
  1980年   4篇
  1979年   2篇
  1978年   6篇
  1977年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有2868条查询结果,搜索用时 0 毫秒
91.
Using C6-NBD-glucosylceramide (GlcCer) as a substrate, we detected the activity of a conduritol B epoxide-insensitive neutral glycosylceramidase in cytosolic fractions of zebrafish embryos, mouse and rat brains, and human fibroblasts. The candidates for the enzyme were assigned to the Klotho (KL), whose family members share a beta-glucosidase-like domain but whose natural substrates are unknown. Among this family, only the KL-related protein (KLrP) is capable of degrading C6-NBD-GlcCer when expressed in CHOP cells, in which Myc-tagged KLrP was exclusively distributed in the cytosol. In addition, knockdown of the endogenous KLrP by small interfering RNA increased the cellular level of GlcCer. The purified recombinant KLrP hydrolyzed 4-methylumbelliferyl-glucose, C6-NBD-GlcCer, and authentic GlcCer at pH 6.0. The enzyme also hydrolyzed the corresponding galactosyl derivatives, but each k(cat)/Km was much lower than that for glucosyl derivatives. The x-ray structure of KLrP at 1.6A resolution revealed that KLrP is a (beta/alpha)8 TIM barrel, in which Glu(165) and Glu(373) at the carboxyl termini of beta-strands 4 and 7 could function as an acid/base catalyst and nucleophile, respectively. The substrate-binding cleft of the enzyme was occupied with palmitic acid and oleic acid when the recombinant protein was crystallized in a complex with glucose. GlcCer was found to fit well the cleft of the crystal structure of KLrP. Collectively, KLrP was identified as a cytosolic neutral glycosylceramidase that could be involved in a novel nonlysosomal catabolic pathway of GlcCer.  相似文献   
92.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   
93.
Pulmonary surfactant protein D (SP-D) is a member of the collectin family and plays crucial roles in the innate immunity of the lung. We have previously shown that surfactant protein A (SP-A), a homologous collectin, interacts with MD-2 and alters lipopolysaccharide signaling. In this study, we examined and characterized the binding of SP-D to MD-2 using a soluble form of recombinant MD-2 (sMD-2). SP-D bound in a concentration- and Ca(2+)-dependent manner to sMD-2 coated onto microtiter wells. Excess mannose abolished the binding of SP-D to sMD-2. In solution, SP-D cosedimented with sMD-2 in the presence of Ca(2+). The direct binding of SP-D to sMD-2 was confirmed by BIAcore analysis. Anti-SP-D monoclonal antibody that recognizes the carbohydrate recognition domain (CRD) of SP-D significantly inhibited the binding of SP-D to sMD-2, indicating the involvement of the CRD for the binding to sMD-2. Ligand blot analysis revealed that SP-D bound to N-glycopeptidase F-treated sMD-2. In addition, the biotinylated SP-D pulled down the mutant sMD-2 with Asn(26) --> Ala and Asn(114) --> Ala substitutions, which lacks the consensus for N-glycosylation. Furthermore, the sMD-2 mutant cosedimented SP-D. These results demonstrate that SP-D directly interacts with MD-2 through the CRD.  相似文献   
94.
Vasorelaxant effects of a series of bis(bibenzyls) from liverworts such as Marchantia polymorpha and Marchantia paleacea on rat aorta demonstrated that they relaxed phenylephrine (PE)-induced contractions, which may be mediated through the increased release of NO from endothelial cells as well as opening of K(+) channels, and inhibition of Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCs) and/or receptor-operated Ca(2+) channels (ROCs). Structure-activity relationship based on their structures was discussed. The presence of two aromatic rings which can be connected through two atoms bridge spacer may play an important role for vasorelaxant effect.  相似文献   
95.
In pancreatic β-cells, glucose-induced mitochondrial ATP production plays an important role in insulin secretion. The mitochondrial phosphate carrier PiC is a member of the SLC25 (solute carrier family 25) family and transports Pi from the cytosol into the mitochondrial matrix. Since intramitochondrial Pi is an essential substrate for mitochondrial ATP production by complex V (ATP synthase) and affects the activity of the respiratory chain, Pi transport via PiC may be a rate-limiting step for ATP production. We evaluated the role of PiC in metabolism-secretion coupling in pancreatic β-cells using INS-1 cells manipulated to reduce PiC expression by siRNA (small interfering RNA). Consequent reduction of the PiC protein level decreased glucose (10 mM)-stimulated insulin secretion, the ATP:ADP ratio in the presence of 10 mM glucose and elevation of intracellular calcium concentration in response to 10 mM glucose without affecting the mitochondrial membrane potential (Δψm) in INS-1 cells. In experiments using the mitochondrial fraction of INS-1 cells in the presence of 1 mM succinate, PiC down-regulation decreased ATP production at various Pi concentrations ranging from 0.001 to 10 mM, but did not affect Δψm at 3 mM Pi. In conclusion, the Pi supply to mitochondria via PiC plays a critical role in ATP production and metabolism-secretion coupling in INS-1 cells.  相似文献   
96.
The production of human therapeutic proteins in plants provides opportunities for low-cost production, and minimizes the risk of contamination from potential human pathogens. Chloroplast genetic engineering is a particularly promising strategy, because plant chloroplasts can produce large amounts of foreign target proteins. Oxidative stress is a key factor in various human diseases. Human thioredoxin 1 (hTrx1) is a stress-induced protein that functions as an antioxidant against oxidative stress, and overexpression of hTrx1 has been shown to suppress various diseases in mice. Therefore, hTrx1 is a prospective candidate as a new human therapeutic protein. We created transplastomic lettuce expressing hTrx1 under the control of the psbA promoter. Transplastomic plants grew normally and were fertile. The hTrx1 protein accumulated to approximately 1% of total soluble protein in mature leaves. The hTrx1 protein purified from lettuce leaves was functionally active, and reduced insulin disulfides. The purified protein protected mouse insulinoma line 6 cells from damage by hydrogen peroxide, as reported previously for a recombinant hTrx1 expressed in Escherichia coli. This is the first report of expression of the biologically active hTrx1 protein in plant chloroplasts. This research opens up possibilities for plant-based production of hTrx1. Considering that this expression host is an edible crop plant, this transplastomic lettuce may be suitable for oral delivery of hTrx1.  相似文献   
97.
98.
Among the many tissue stem or progenitor cells recently being unveiled, endothelial progenitor cells (EPCs) have attracted particular attention, not only because of their cardinal role in vascular biology and embryology but also because of their potential use in the therapeutic development of a variety of postnatal diseases, including cardiovascular and peripheral vascular disorders and cancer. The aim of this study is to provide some basic and comprehensive information on gene expression of EPCs to characterize the cells in molecular terms. Here, we focus on EPCs derived from CD34-positive mononuclear cells of human umbilical cord blood. The EPCs were purified and expanded in culture and analyzed by a high-density oligonucleotide microarray and real-time RT-PCR analysis. We identified 169 up-regulated and 107 down-regulated genes in the EPCs compared with three differentiated endothelial cells of human umbilical vein endothelial cells (HUVEC), human lung microvascular endothelial cells (LMEC) and human aortic endothelial cells (AoEC). It is expected that the obtained list include key genes which are critical for EPC function and survival and thus potential targets of EPC recognition in vivo and therapeutic modulation of vasculogenesis in cancer as well as other diseases, in which de novo vasculogenesis plays a crucial role. For instance, the list includes Syk and galectin-3, which encode protein tyrosine kinase and β-galactoside-binding protein, respectively, and are expressed higher in EPCs than the three control endothelial cells. In situ hybridization showed that the genes were expressed in isolated cells in the fetal liver at E11.5 and E14.5 of mouse development.  相似文献   
99.
Pentatricopeptide repeat (PPR) motifs are α-helical structures known for their modular recognition of single-stranded RNA sequences with each motif in a tandem array binding to a single nucleotide. Protein-only RNase P 1 (PRORP1) in Arabidopsis thaliana is an endoribonuclease that uses its PPR domain to recognize precursor tRNAs (pre-tRNAs) as it catalyzes removal of the 5′-leader sequence from pre-tRNAs with its NYN metallonuclease domain. To gain insight into the mechanism by which PRORP1 recognizes tRNA, we determined a crystal structure of the PPR domain in complex with yeast tRNAPhe at 2.85 Å resolution. The PPR domain of PRORP1 bound to the structurally conserved elbow of tRNA and recognized conserved structural features of tRNAs using mechanisms that are different from the established single-stranded RNA recognition mode of PPR motifs. The PRORP1 PPR domain-tRNAPhe structure revealed a conformational change of the PPR domain upon tRNA binding and moreover demonstrated the need for pronounced overall flexibility in the PRORP1 enzyme conformation for substrate recognition and catalysis. The PRORP1 PPR motifs have evolved strategies for protein-tRNA interaction analogous to tRNA recognition by the RNA component of ribonucleoprotein RNase P and other catalytic RNAs, indicating convergence on a common solution for tRNA substrate recognition.  相似文献   
100.
A new peptidoglycan hydrolase, Bacillus subtilis YojL (cell wall-lytic enzyme associated with cell separation, renamed CwlS), exhibits high amino acid sequence similarity to LytE (CwlF) and LytF (CwlE), which are associated with cell separation. The N-terminal region of CwlS has four tandem repeat regions (LysM repeats) predicted to be a peptidoglycan-binding module. The C-terminal region exhibits high similarity to the cell wall hydrolase domains of LytE and LytF at their C-terminal ends. The C-terminal region of CwlS produced in Escherichia coli could hydrolyze the linkage of d-gamma-glutamyl-meso-diaminopimelic acid in the cell wall of B. subtilis, suggesting that CwlS is a d,l-endopeptidase. beta-Galactosidase fusion experiments and Northern hybridization analysis suggested that the cwlS gene is transcribed during the late vegetative and early stationary phases. A cwlS mutant exhibited a cell shape similar to that of the wild type; however, a lytE lytF cwlS triple mutant exhibited aggregated microfiber formation. Moreover, immunofluorescence microscopy showed that FLAG-tagged CwlS was localized at cell separation sites and cell poles during the late vegetative phase. The localization sites are similar to those of LytF and LytE, indicating that CwlS is involved in cell separation with LytF and LytE. These specific localizations may be dependent on the LysM repeats in their N-terminal domains. The roles of CwlS, LytF, and LytE in cell separation are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号