首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   13篇
  187篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   2篇
  2008年   11篇
  2007年   13篇
  2006年   12篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
  1966年   1篇
  1956年   1篇
  1954年   2篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
81.
The invasion-associated type III secretion system (T3SS-1) of S. Typhimurium is required to initiate and sustain an acute inflammatory response in the intestine. We investigated the relationship of S. Typhimurium T3SS-1-induced IL-8 expression and invasion with intracellular Ca2+ mobilization in HeLa cells. Compared to the sipAsopABDE2 mutant, strains carrying a mutation in sipA, or mutations in sopABDE2 induced higher levels of IL-8 and greater bacterial internalization despite the fact that these mutants elicited similarly low intracellular concentrations of Ca2+. Likewise, complemented sipAsopABDE2 mutant with sopE2 did not affect intracellular Ca2+ concentrations or IL-8 expression, but significantly increased bacterial internalization. Treating HeLa cells with the calcium chelator BAPTA-AM or with D-BAPTA-AM, a derivative with greatly reduced Ca2+ chelating activity, yielded strong evidence that BAPTA-AM does not affect invasion and inhibits IL-8 secretion by a calcium-dependent mechanism. These findings suggest that, although wild-type S. Typhimurium-induced IL-8 expression and bacterial internalization in HeLa cells coincides with increased cytosolic Ca2+, the differing levels of IL-8 and invasion induced by strains carrying different effector proteins are unrelated to levels of intracellular Ca2+.  相似文献   
82.
AimsWe assessed the effects of right atrial stretch on gastric tone and neuro-humoral pathways involved in this phenomenon.Main methodsAnesthetized male rats were submitted for monitoring of the mean arterial pressure (MAP) and central venous pressure (CVP). A balloon catheter positioned into the stomach monitored by plethysmography the gastric volume (GV). All rats were monitored for 55-min. After the first 20-min of monitoring (basal period), rats were either submitted to a 5-min interval of atrial stretch (AS) or maintained as controls. An intra-atrial balloon catheter was distended with 30, 50, or 70 µL of saline. GV and hemodynamic data were also monitored for a further 30-min. Another set of rats, either previously submitted to subdiaphragmatic vagotomy or splanchnicectomy plus celiac ganglionectomy or maintained as controls (sham), were also submitted to AS. Each subset consisted of six rats. The plasma level of the atrial natriuretic peptide (ANP) was measured in another group of rats. Data were compared by ANOVA followed by Bonferroni's test.Key findingsIn control rats, the GV, MAP, and CVP remained at stable levels throughout the studies. In addition to increase the CVP, AS also decreased (P < 0.05) the GV by 14%, 11.5%, and 16.5% in the 30, 50, and 70 µL groups, respectively. Vagotomy prevented the GV decrease. In contrast, the AS decreased (P < 0.05) the GV by 21.3% in splanchnicectomized rats.SignificanceAS decreased the GV of rats in a volume-dependent manner, a phenomenon prevented by vagotomy but enhanced by celiac ganglionectomy.  相似文献   
83.
Molecular mechanisms by which protein–protein interactions are preserved or lost after gene duplication are not understood. Taking advantage of the well–studied yeast mtHsp70:J–protein molecular chaperone system, we considered whether changes in partner proteins accompanied specialization of gene duplicates. Here, we report that existence of the Hsp70 Ssq1, which arose by duplication of the gene encoding multifunction mtHsp70 and specializes in iron–sulphur cluster biogenesis, correlates with functional and structural changes in the J domain of its J–protein partner Jac1. All species encoding this shorter alternative version of the J domain share a common ancestry, suggesting that all short JAC1 proteins arose from a single deletion event. Construction of a variant that extended the length of the J domain of a ‘short’ Jac1 enhanced its ability to partner with multifunctional Hsp70. Our data provide a causal link between changes in the J protein partner and specialization of duplicate Hsp70.  相似文献   
84.
Conjugated linoleic acids (CLAs) are bioactive lipid compounds showing anti-atherogenic actions in cell culture experiments and animal models of atherosclerosis without exact knowledge about the underlying mechanisms. CLAs were recently reported to be further metabolized to bioactive conjugated metabolites indicating that these metabolites are possibly involved in mediating the anti-atherogenic actions of CLA. Regarding the lack of information with respect to the formation of CLA metabolites in the vascular endothelium, which is strongly involved in the process of atherosclerosis, the present study aimed to explore the potential formation of CLA metabolites in vascular endothelial cells. The results from the present study show for the first time that the CLA isomers cis-9, trans-11 CLA and trans-10, cis-12 CLA are metabolized within endothelial cells to beta-oxidation products such as CD16:2c7t9 and CD16:2t8c10 and elongation products such as CD20:2c11t13, CD20:2t12c14 as well as CD22:2c13t15 and CD22:2t14c16. Different CD16:2/CLA ratios observed between cells treated with different CLA isomers indicate that the metabolism of CLAs depends on the configuration of the conjugated double bonds. In conclusion, regarding the biological activity reported for CD20:2t12c14 and other metabolites of CLA, the present results indicate that metabolites of CLA are possibly also involved in mediating the anti-atherogenic actions of CLA.  相似文献   
85.
Ca(v)2.1 (P/Q-type) voltage-gated calcium channels play an important role in neurotransmitter release at many brain synapses and at the neuromuscular junction. Mutations in the CACNA1A gene, encoding the pore forming alpha(1) subunit of Ca(v)2.1 channels, are associated with a wide spectrum of neurological disorders. Here we generated mice with a conditional, floxed, Cacna1a allele without any overt phenotype. Deletion of the floxed Cacna1a allele resulted in ataxia, dystonia, and lethality during the fourth week, a severe phenotype similar to conventional Ca(v)2.1 knockout mice. Although neurotransmitter release at the neuromuscular junction was not affected in the conditional mice, homozygous deletion of the floxed allele caused an ablation of Ca(v)2.1 channel-mediated neurotransmission that was accompanied by a compensatory upregulation of Ca(v)2.3 (R-type) channels at this synapse. Pharmacological inhibition of Ca(v)2.1 channels is possible, but the contributing cell-types and time windows relevant to the different Ca(v)2.1-related neurological disorders can only be reliably determined using Cacna1a conditional mice.  相似文献   
86.
DNA methylation is an epigenetic mechanism of gene regulation. We have determined that specific modifications in DNA methylation at the IFN-gamma locus occur during memory CD8 T cell differentiation in vivo. Expression of the antiviral cytokine IFN-gamma in CD8 T cells is highly developmental stage specific. Most naive cells must divide before they express IFN-gamma, while memory cells vigorously express IFN-gamma before cell division. Ag-specific CD8 T cells were obtained during viral infection of mice and examined directly ex vivo. Naive cells had an IFN-gamma locus with extensive methylation at three specific CpG sites. An inhibitor of methylation increased the amount of IFN-gamma in naive cells, indicating that methylation contributes to the slow and meager production of IFN-gamma. Effectors were unmethylated and produced large amounts of IFN-gamma. Interestingly, while memory cells were also able to produce large amounts of IFN-gamma, the gene was partially methylated at the three CpG sites. Within 5 h of antigenic stimulation, however, the gene was rapidly demethylated in memory cells. This was independent of DNA synthesis and cell division, suggesting a yet unidentified demethylase. Rapid demethylation of the IFN-gamma promoter by an enzymatic factor only in memory cells would be a novel mechanism of differential gene regulation. This differentiation stage-specific mechanism reflects a basic immunologic principle: naive cells need to expand before becoming an effective defense factor, whereas memory cells with already increased precursor frequency can rapidly mount effector functions to eliminate reinfecting pathogens in a strictly Ag-dependent fashion.  相似文献   
87.
The composition of intestinal microbiota and the Bifidobacterium group community in 20 allergic and 20 nonallergic 5-year-old children was visualized by PCR-denaturing gradient gel electrophoresis (DGGE). The number of dominant bands in the DGGE profiles was smaller in allergic children than in nonallergic children (P<0.001). Allergic children mainly formed a single group upon cluster analysis, whereas nonallergic children were divided between four different groups. In allergic children the Bifidobacterium adolescentis species prevailed, and in nonallergic children the Bifidobacterium catenulatum/pseudocatenulatum prevailed (P=0.01 and P=0.01, respectively). The less diverse composition of intestinal microbiota and prevalence of particular species of Bifidobacterium were characteristic of allergic children even at the age of 5 years.  相似文献   
88.
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) activate one single receptor (PTH1R) which mediates catabolic and anabolic actions in the bone. Activation of PTH1R modulates multiple intracellular signaling responses. We previously reported that PTH and PTHrP down-regulate pERK1/2 and cyclin D1 in differentiated osteoblasts. In this study we investigate the role of MAPK phosphatase-1 (MKP-1) in PTHrP regulation of ERK1/2 activity in relation to osteoblast proliferation, differentiation and bone formation. Here we show that PTHrP increases MKP-1 expression in differentiated osteoblastic MC3T3-E1 cells, primary cultures of differentiated bone marrow stromal cells (BMSCs) and calvarial osteoblasts. PTHrP had no effect on MKP-1 expression in proliferating osteoblastic cells. Overexpression of MKP-1 in MC-4 cells inhibited osteoblastic cell proliferation. Cell extracts from differentiated MC-4 cells treated with PTHrP inactivate/dephosphorylate pERK1/2 in vitro; immunodepletion of MKP-1 blocked the ability of the extract to dephosphorylate pERK1/2; these data indicate that MKP-1 is involved in PTHrP-induced pERK1/2 dephosphorylation in the differentiated osteoblastic cells. PTHrP regulation of MKP-1 expression is partially dependent on PKA and PKC pathways. Treatment of nude mice, bearing ectopic ossicles, with intermittent PTH for 3 weeks, up-regulated MKP-1 and osteocalcin, a bone formation marker, with an increase in bone formation. These data indicate that PTH and PTHrP increase MKP-1 expression in differentiated osteoblasts; and that MKP-1 induces growth arrest of osteoblasts, via inactivating pERK1/2 and down-regulating cyclin D1; and identify MKP-1 as a possible mediator of the anabolic actions of PTH1R in mature osteoblasts.  相似文献   
89.

Aim

Several large-mammal species in Europe have recovered and recolonized parts of their historical ranges. Knowing where suitable habitat exists, and thus where range expansions are possible, is important for proactively promoting coexistence between people and large mammals in shared landscapes. We aimed to assess the opportunities and limitations for range expansions of Europe's two largest herbivores, the European bison (Bison bonasus) and moose (Alces alces).

Location

Central Europe.

Methods

We used large occurrence datasets from multiple populations and species distribution models to map environmentally suitable habitats for European bison and moose across Central Europe, and to assess human pressure inside the potential habitat. We then used circuit theory modeling to identify potential recolonization corridors.

Results

We found widespread suitable habitats for both European bison (>120,000 km2) and moose (>244,000 km2), suggesting substantial potential for range expansions. However, much habitat was associated with high human pressure (37% and 43% for European bison and moose, respectively), particularly in the west of Central Europe. We identified a strong east–west gradient of decreasing connectivity, with major barriers likely limiting natural recolonization in many areas.

Main conclusions

We identify major potential for restoring large herbivores and their functional roles in Europe's landscapes. However, we also highlight considerable challenges for conservation planning and wildlife management, including areas where recolonization likely leads to human–wildlife conflict and where barriers to movement prevent natural range expansion. Conservation measures restoring broad-scale connectivity are needed in order to allow European bison and moose to recolonize their historical ranges. Finally, our analyses and maps indicate suitable but isolated habitat patches that are unlikely to be colonized but are candidate locations for reintroductions to establish reservoir populations. More generally, our work emphasizes that transboundary cooperation is needed for restoring large herbivores and their ecological roles, and to foster coexistence with people in Europe's landscapes.  相似文献   
90.
Cultured human myotubes have a low mitochondrial oxidative potential. This study aims to remodel energy metabolism in myotubes by replacing glucose with galactose during growth and differentiation to ultimately examine the consequences for fatty acid and glucose metabolism. Exposure to galactose showed an increased [14C]oleic acid oxidation, whereas cellular uptake of oleic acid uptake was unchanged. On the other hand, both cellular uptake and oxidation of [14C]glucose increased in myotubes exposed to galactose. In the presence of the mitochondrial uncoupler carbonylcyanide p-trifluormethoxy-phenylhydrazone (FCCP) the reserve capacity for glucose oxidation was increased in cells grown with galactose. Staining and live imaging of the cells showed that myotubes exposed to galactose had a significant increase in mitochondrial and neutral lipid content. Suppressibility of fatty acid oxidation by acute addition of glucose was increased compared to cells grown in presence of glucose. In summary, we show that cells grown in galactose were more oxidative, had increased oxidative capacity and higher mitochondrial content, and showed an increased glucose handling. Interestingly, cells exposed to galactose showed an increased suppressibility of fatty acid metabolism. Thus, galactose improved glucose metabolism and metabolic switching of myotubes, representing a cell model that may be valuable for metabolic studies related to insulin resistance and disorders involving mitochondrial impairments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号