首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   13篇
  187篇
  2023年   1篇
  2022年   5篇
  2021年   9篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   4篇
  2016年   13篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   2篇
  2008年   11篇
  2007年   13篇
  2006年   12篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1972年   1篇
  1966年   1篇
  1956年   1篇
  1954年   2篇
排序方式: 共有187条查询结果,搜索用时 0 毫秒
101.
102.
DNA methylation is an epigenetic mechanism of gene regulation. We have determined that specific modifications in DNA methylation at the IFN-gamma locus occur during memory CD8 T cell differentiation in vivo. Expression of the antiviral cytokine IFN-gamma in CD8 T cells is highly developmental stage specific. Most naive cells must divide before they express IFN-gamma, while memory cells vigorously express IFN-gamma before cell division. Ag-specific CD8 T cells were obtained during viral infection of mice and examined directly ex vivo. Naive cells had an IFN-gamma locus with extensive methylation at three specific CpG sites. An inhibitor of methylation increased the amount of IFN-gamma in naive cells, indicating that methylation contributes to the slow and meager production of IFN-gamma. Effectors were unmethylated and produced large amounts of IFN-gamma. Interestingly, while memory cells were also able to produce large amounts of IFN-gamma, the gene was partially methylated at the three CpG sites. Within 5 h of antigenic stimulation, however, the gene was rapidly demethylated in memory cells. This was independent of DNA synthesis and cell division, suggesting a yet unidentified demethylase. Rapid demethylation of the IFN-gamma promoter by an enzymatic factor only in memory cells would be a novel mechanism of differential gene regulation. This differentiation stage-specific mechanism reflects a basic immunologic principle: naive cells need to expand before becoming an effective defense factor, whereas memory cells with already increased precursor frequency can rapidly mount effector functions to eliminate reinfecting pathogens in a strictly Ag-dependent fashion.  相似文献   
103.
104.
  1. Wild Atlantic salmon populations have declined in many regions and are affected by diverse natural and anthropogenic factors. To facilitate management guidelines, precise knowledge of mechanisms driving population changes in demographics and life history traits is needed.
  2. Our analyses were conducted on (a) age and growth data from scales of salmon caught by angling in the river Etneelva, Norway, covering smolt year classes from 1980 to 2018, (b) extensive sampling of the whole spawning run in the fish trap from 2013 onwards, and (c) time series of sea surface temperature, zooplankton biomass, and salmon lice infestation intensity.
  3. Marine growth during the first year at sea displayed a distinct stepwise decline across the four decades. Simultaneously, the population shifted from predominantly 1SW to 2SW salmon, and the proportion of repeat spawners increased from 3 to 7%. The latter observation is most evident in females and likely due to decreased marine exploitation. Female repeat spawners tended to be less catchable than males by anglers.
  4. Depending on the time period analyzed, marine growth rate during the first year at sea was both positively and negatively associated with sea surface temperature. Zooplankton biomass was positively associated with growth, while salmon lice infestation intensity was negatively associated with growth.
  5. Collectively, these results are likely to be linked with both changes in oceanic conditions and harvest regimes. Our conflicting results regarding the influence of sea surface temperature on marine growth are likely to be caused by long‐term increases in temperature, which may have triggered (or coincided with) ecosystem shifts creating generally poorer growth conditions over time, but within shorter datasets warmer years gave generally higher growth. We encourage management authorities to expand the use of permanently monitored reference rivers with complete trapping facilities, like the river Etneelva, generating valuable long‐term data for future analyses.
  相似文献   
105.
106.
Major efforts have been invested in the identification of cancer biomarkers in plasma, but the extraordinary dynamic range in protein composition, and the dilution of disease specific proteins make discovery in plasma challenging. Focus is shifting towards using proximal fluids for biomarker discovery, but methods to verify the isolated sample's origin are missing. We therefore aimed to develop a technique to search for potential candidate proteins in the proximal proteome, i.e. in the tumor interstitial fluid, since the biomarkers are likely to be excreted or derive from the tumor microenvironment. Since tumor interstitial fluid is not readily accessible, we applied a centrifugation method developed in experimental animals and asked whether interstitial fluid from human tissue could be isolated, using ovarian carcinoma as a model. Exposure of extirpated tissue to 106 g enabled tumor fluid isolation. The fluid was verified as interstitial by an isolated fluid:plasma ratio not significantly different from 1.0 for both creatinine and Na(+), two substances predominantly present in interstitial fluid. The isolated fluid had a colloid osmotic pressure 79% of that in plasma, suggesting that there was some sieving of proteins at the capillary wall. Using a proteomic approach we detected 769 proteins in the isolated interstitial fluid, sixfold higher than in patient plasma. We conclude that the isolated fluid represents undiluted interstitial fluid and thus a subproteome with high concentration of locally secreted proteins that may be detected in plasma for diagnostic, therapeutic and prognostic monitoring by targeted methods.  相似文献   
107.

Background

Kynurenic acid (KYNA) is the end stage metabolite of tryptophan produced mainly by astrocytes in the central nervous system (CNS). It has neuroprotective activities but can be elevated in the neuropsychiatric disorders. Toxic effects of KYNA in the CNS are unknown. The aim of this study was to assess the effect of the subdural KYNA infusion on the spinal cord in adult rats.

Methods

A total of 42 healthy adult rats were randomly assigned into six groups and were infused for 7 days with PBS (control) or 0.0002 pmol/min, 0.01 nmol/min, 0.1 nmol/min, 1 nmol/min, and 10 nmol/min of KYNA per 7 days. The effect of KYNA on spinal cord was determined using histological and electron microscopy examination. Myelin oligodendrocyte glycoprotein (MOG) was measured in the blood serum to assess a degree of myelin damage.

Result

In all rats continuous long-lasting subdural KYNA infusion was associated with myelin damage and myelin loss that was increasingly widespread in a dose-depended fashion in peripheral, sub-pial areas. Damage to myelin sheaths was uniquely related to the separation of lamellae at the intraperiod line. The damaged myelin sheaths and areas with complete loss of myelin were associated with limited loss of scattered axons while vast majority of axons in affected areas were morphologically intact. The myelin loss-causing effect of KYNA occurred with no necrosis of oligodendrocytes, with locally severe astrogliosis and no cellular inflammatory response. Additionally, subdural KYNA infusion increased blood MOG concentration. Moreover, the rats infused with the highest doses of KYNA (1 and 10 nmol/min) demonstrated adverse neurological signs including weakness and quadriplegia.

Conclusions

We suggest, that subdural infusion of high dose of KYNA can be used as an experimental tool for the study of mechanisms of myelin damage and regeneration. On the other hand, the administration of low, physiologically relevant doses of KYNA may help to discover the role of KYNA in control of physiological myelination process.  相似文献   
108.
Phthalates are a class of high volume production chemicals used as plasticizers for household and industrial use. Several members of this chemical family have endocrine disrupting activity. Owing to ubiquitous environmental distribution and exposure of human population at all stages of life, phthalate contamination is a continuous global public health problem. Clinical and experimental studies have indicated that several phthalates are associated with adverse effects on development and function of human and animal systems especially the reproductive system and exposures during pregnancy and early childhood are by far of utmost concern. Sex hormone-binding globulin (SHBG) is a plasma carrier protein that binds androgens and estrogens and represents a potential target for phthalate endocrine disruptor function in the body. In the present study, the binding mechanism of the nine phthalates i.e. DMP, DBP, DIBP, BBP, DNHP, DEHP, DNOP, DINP, DIDP with human SHBG was delineated by molecular docking simulation. Docking complexes of the nine phthalates displayed interactions with 15–31 amino acid residues of SHBG and a commonality of 55–95% interacting residues between natural ligand of SHBG, dihydrotestosterone, and the nine phthalate compounds was observed. The binding affinity values were more negative for long chain phthalates DEHP, DNOP, DINP, and DIDP compared to short chain phthalates such as DMP and DBP. The Dock score and Glide score values were also higher for long chain phthalates compared to short chain phthalates. Hence, overlapping of interacting amino acid residues between phthalate compounds and natural ligand, dihydrotestosterone, suggested potential disrupting activity of phthalates in the endocrine homeostasis function of SHBG, with long chain phthalates expected to be more potent than the short chain phthalates.  相似文献   
109.
110.
We have previously reported that Lyt2+ cytotoxic T lymphocytes (CTL) can be raised against Japanese encephalitis virus (JEV) in BALB/c mice. In order to confirm the presence of H-2Kd-restricted CTL and to examine their cross-recognition of West Nile virus (WNV), we tested the capacity of anti-JEV CTL to lyse uninfected syngeneic target cells that were pulsed with synthetic peptides. The sequence of the synthetic peptides was predicted based upon the H-2Kd binding consensus motif. We show here that preincubation of uninfected syngeneic targets (P388D1) with JEV NS1- and NS3-derived peptides [NS1 (891-899) and NS3 (1804-1812)], but not with JEV NS5-derived peptide [NS5 (3370-3378)], partially sensitized them for lysis by polyclonal anti-JEV CTL. These results indicate the CTL recognition of NS1- and NS3-derived peptides of JEV.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号